MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 1946: Surface Chemical Changes of Sugar Maple Wood Induced by Thermo-Hygromechanical (THM) Treatment (Materials)


17 june 2019 10:02:58

Materials, Vol. 12, Pages 1946: Surface Chemical Changes of Sugar Maple Wood Induced by Thermo-Hygromechanical (THM) Treatment (Materials)

The aim of this study was to investigate the effects of heat and steam on the chemical properties of thermo-hygromechanical (THM)-densified sugar maple wood. The THM densification process was performed at two different temperatures (180 °C and 200 °C) with and without steam. The functional groups, surface chemical composition and internal structure and components of the control and densified samples were investigated using attenuated total reflection Fourier transform infrared (ATR-FTIR), X-ray photoelectron (XPS) spectroscopy and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS). The obtained results suggest that the THM densification treatment resulted in significant chemical changes on the wood surface. The results of the ATR-FTIR spectra confirmed the decomposition of hemicelluloses and the relative increase of cellulose and lignin contents on the wood surface. The Py-GC/MS and XPS results show an increase of the oxygen/carbon atomic (O/C) ratio, which indicated that chemical substances containing oxygenated functionality were formed through the densification process. The densification treatment favored the depolymerization of hemicelluloses and cellulose as indicated by an increased anhydrous sugar (levoglucosan) release during the pyrolysis process. Densification also facilitated the cleavage of the lignin side chains, resulting in increased phenyl units with short chains released during the pyrolysis process. Digg Facebook Google StumbleUpon Twitter
38 viewsCategory: Chemistry, Physics
Materials, Vol. 12, Pages 1945: A Combined Barite-Ilmenite Weighting Material to Prevent Barite Sag in Water-Based Drilling Fluid (Materials)
Materials, Vol. 12, Pages 1943: Si-Based Materials for Thermoelectric Applications (Materials)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve



Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn