MyJournals Home  

RSS FeedsEnergies, Vol. 12, Pages 2450: Tip-Bed Velocity and Scour Depth of Horizontal-Axis Tidal Turbine with Consideration of Tip Clearance (Energies)

 
 

26 june 2019 06:03:13

 
Energies, Vol. 12, Pages 2450: Tip-Bed Velocity and Scour Depth of Horizontal-Axis Tidal Turbine with Consideration of Tip Clearance (Energies)
 


The scouring by a tidal turbine is investigated by using a joint theoretical and experimental approach in this work. The existence of a turbine obstructs a tidal flow to divert the flow passing through the narrow channel in between the blades and seabed. Flow suppression is the main cause behind inducing tidal turbine scouring, and its accelerated velocity is being termed as tip-bed velocity (Vtb). A theoretical equation is currently proposed to predict the tip-bed velocity based on the axial momentum theory and the conservation of mass. The proposed tip-bed velocity equation is a function of four variables of rotor radius (r), tip-bed clearance (C), efflux velocity (V0) and free flow velocity (V∞), and a constant of mass flow coefficient (Cm) of 0.25. An experimental apparatus was built to conduct the scour experiments. The results provide a better understanding of the scour mechanism of the horizontal axis tidal turbine-induced scour. The experimental results show that the scour depth is inversely proportional to tip-bed clearance. Turbine coefficient (Kt) is proposed based on the relationship between the tip-bed velocity and the experimental tidal turbine scour depth. Inclusion of turbine coefficient (Kt) into the existing pier scour equations can predict the maximum scour depth of a tidal turbine with an error range of 5–24%.


 
77 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 12, Pages 2451: Analysis of Building Electricity Use Pattern Using K-Means Clustering Algorithm by Determination of Better Initial Centroids and Number of Clusters (Energies)
Energies, Vol. 12, Pages 2449: Pseudo-Steady-State Parameters for a Well Penetrated by a Fracture with an Azimuth Angle in an Anisotropic Reservoir (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten