MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 1667: Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements (Remote Sensing)

 
 

13 july 2019 14:00:46

 
Remote Sensing, Vol. 11, Pages 1667: Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements (Remote Sensing)
 


In this study, Sentinel-1 and Advanced Land Observation Satellite-2 (ALOS-2) interferometric synthetic aperture radar (InSAR) and global positioning system (GPS) data were used to jointly determine the source parameters and fault slip distribution of the Mw 6.6 Hokkaido eastern Iburi, Japan, earthquake that occurred on 5 September 2018. The coseismic deformation map obtained from the ascending and descending Sentinel-1 and ALOS-2 InSAR data and GPS data is consistent with a thrust faulting event. A comparison between the InSAR-observed and GPS-projected line-of-sight (LOS) deformation suggests that descending Sentinel-1 track T046D, descending ALOS-2 track P018D, and ascending ALOS-2 track P112A and GPS data can be used to invert for the source parameters. The results of a nonlinear inversion show that the seismogenic fault is a blind NNW-trending (strike angle ~347.2°), east-dipping (dip angle ~79.6°) thrust fault. On the basis of the optimal fault geometry model, the fault slip distribution jointly inverted from the three datasets reveals that a significant slip area extends 30 km along the strike and 25 km in the downdip direction, and the peak slip magnitude can approach 0.53 m at a depth of 15.5 km. The estimated geodetic moment magnitude released by the distributed slip model is 6.16   × 10 18   N · m , equivalent to an event magnitude of Mw 6.50, which is slightly smaller than the estimates of focal mechanism solutions. According to the Coulomb stress change at the surrounding faults, more attention should be paid to potential earthquake disasters in this region in the near future. In consideration of the possibility of multi-fault rupture and complexity of regional geologic framework, the refined distributed slip and seismogenic mechanism of this deep reverse faulting should be investigated with multi-disciplinary (e.g., geodetic, seismic, and geological) data in further studies.


 
203 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 1669: A Fast High-Resolution Imaging Algorithm for Helicopter-Borne Rotating Array SAR Based on 2-D Chirp-Z Transform (Remote Sensing)
Remote Sensing, Vol. 11, Pages 1668: Thermal Airborne Optical Sectioning (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten