MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 1911: Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR (Remote Sensing)

 
 

15 august 2019 21:02:41

 
Remote Sensing, Vol. 11, Pages 1911: Mapping Physiognomic Types of Indigenous Forest using Space-Borne SAR, Optical Imagery and Air-borne LiDAR (Remote Sensing)
 


Indigenous forests cover 24% of New Zealand and provide valuable ecosystem services. However, a national map of forest types, that is, physiognomic types, which would benefit conservation management, does not currently exist at an appropriate level of detail. While traditional forest classification approaches from remote sensing data are based on spectral information alone, the joint use of space-based optical imagery and structural information from synthetic aperture radar (SAR) and canopy metrics from air-borne Light Detection and Ranging (LiDAR) facilitates more detailed and accurate classifications of forest structure. We present a support vector machine (SVM) classification using data from the European Space Agency (ESA) Sentinel-1 and 2 missions, Advanced Land Orbiting Satellite (ALOS) PALSAR, and airborne LiDAR to produce a regional map of physiognomic types of indigenous forest. A five-fold cross-validation (repeated 100 times) of ground data showed that the highest classification accuracy of 80.5% is achieved for bands 2, 3, 4, 8, 11, and 12 from Sentinel-2, the ratio of bands VH (vertical transmit and horizontal receive) and VV (vertical transmit and vertical receive) from Sentinel-1, and mean canopy height and 97th percentile canopy height from LiDAR. The classification based on optical bands alone was 72.7% accurate and the addition of structural metrics from SAR and LiDAR increased accuracy by 7.4%. The classification accuracy is sufficient for many management applications for indigenous forest, including biodiversity management, carbon inventory, pest control, ungulate management, and disease management.


 
181 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 1909: Semiautomated Detection and Mapping of Vegetation Distribution in the Antarctic Environment Using Spatial-Spectral Characteristics of WorldView-2 Imagery (Remote Sensing)
Remote Sensing, Vol. 11, Pages 1912: An Accurate Visual-Inertial Integrated Geo-Tagging Method for Crowdsourcing-Based Indoor Localization (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten