MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 1922: Learnable Gated Convolutional Neural Network for Semantic Segmentation in Remote-Sensing Images (Remote Sensing)

 
 

17 august 2019 14:03:31

 
Remote Sensing, Vol. 11, Pages 1922: Learnable Gated Convolutional Neural Network for Semantic Segmentation in Remote-Sensing Images (Remote Sensing)
 




Semantic segmentation in high-resolution remote-sensing (RS) images is a fundamental task for RS-based urban understanding and planning. However, various types of artificial objects in urban areas make this task quite challenging. Recently, the use of Deep Convolutional Neural Networks (DCNNs) with multiscale information fusion has demonstrated great potential in enhancing performance. Technically, however, existing fusions are usually implemented by summing or concatenating feature maps in a straightforward way. Seldom do works consider the spatial importance for global-to-local context-information aggregation. This paper proposes a Learnable-Gated CNN (L-GCNN) to address this issue. Methodologically, the Taylor expression of the information-entropy function is first parameterized to design the gate function, which is employed to generate pixelwise weights for coarse-to-fine refinement in the L-GCNN. Accordingly, a Parameterized Gate Module (PGM) was designed to achieve this goal. Then, the single PGM and its densely connected extension were embedded into different levels of the encoder in the L-GCNN to help identify the discriminative feature maps at different scales. With the above designs, the L-GCNN is finally organized as a self-cascaded end-to-end architecture that is able to sequentially aggregate context information for fine segmentation. The proposed model was evaluated on two public challenging benchmarks, the ISPRS 2Dsemantic segmentation challenge Potsdam dataset and the Massachusetts building dataset. The experiment results demonstrate that the proposed method exhibited significant improvement compared with several related segmentation networks, including the FCN, SegNet, RefineNet, PSPNet, DeepLab and GSN.For example, on the Potsdam dataset, our method achieved a 93.65% F 1 score and 88.06% I o U score for the segmentation of tiny cars in high-resolution RS images. As a conclusion, the proposed model showed potential for object segmentation from the RS images of buildings, impervious surfaces, low vegetation, trees and cars in urban settings, which largely varies in size and have confusing appearances.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
45 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 1923: Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data (Remote Sensing)
Remote Sensing, Vol. 11, Pages 1921: Oceanic Mesoscale Eddy Detection Method Based on Deep Learning (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn