MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 3586: Precise and Robust RTK-GNSS Positioning in Urban Environments with Dual-Antenna Configuration (Sensors)

 
 

17 august 2019 22:04:21

 
Sensors, Vol. 19, Pages 3586: Precise and Robust RTK-GNSS Positioning in Urban Environments with Dual-Antenna Configuration (Sensors)
 




Robust and centimeter-level Real-time Kinematic (RTK)-based Global Navigation Satellite System (GNSS) positioning is of paramount importance for emerging GNSS applications, such as drones and automobile systems. However, the performance of conventional single-rover RTK degrades greatly in urban environments due to signal blockage and strong multipath. The increasing use of multiple-antenna/rover configurations for attitude determination in the above precise positioning applications, just as well, allows more information involved to improve RTK positioning performance in urban areas. This paper proposes a dual-antenna constraint RTK algorithm, which combines GNSS measurements of both antennas by making use of the geometric constraint between them. By doing this, the reception diversity between two antennas can be taken advantage of to improve the availability and geometric distribution of GNSS satellites, and what is more, the redundant measurements from a second antenna help to weaken the multipath effect on the first antenna. Particularly, an Ambiguity Dilution of Precision (ADOP)-based analysis is carried out to explore the intrinsic model strength for ambiguity resolution (AR) with different kinds of constraints. Based on the results, a Dual-Antenna with baseline VEctor Constraint algorithm (RTK) is developed. The primary advantages of the reported method include: 1) Improved availability and success rate of RTK, even if neither of the two single-antenna receivers can successfully solve the AR problem; and 2) reduced computational burden by adopting the concept of measurement projection. Simulated and real data experiments are performed to demonstrate robustness and precision of the algorithm in GNSS-challenged environments.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
33 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 3588: Dynamic Walking of a Legged Robot in Underwater Environments (Sensors)
Sensors, Vol. 19, Pages 3587: Electrospun Nanofibers for Label-Free Sensor Applications (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn