MyJournals Home  

RSS FeedsEntropy, Vol. 21, Pages 814: Turbo Decoder Design based on an LUT-Normalized Log-MAP Algorithm (Entropy)

 
 

20 august 2019 12:01:34

 
Entropy, Vol. 21, Pages 814: Turbo Decoder Design based on an LUT-Normalized Log-MAP Algorithm (Entropy)
 


Turbo codes have been widely used in wireless communication systems due to their good error correction performance. Under time division long term evolution (TD-LTE) of the 3rd generation partnership project (3GPP) wireless communication standard, a Log maximum a posteriori (Log-MAP) decoding algorithm with high complexity is usually approximated as a lookup-table Log-MAP (LUT-Log-MAP) algorithm and Max-Log-MAP algorithm, but these two algorithms have high complexity and high bit error rate, respectively. In this paper, we propose a normalized Log-MAP (Nor-Log-MAP) decoding algorithm in which the function max* is approximated by using a fixed normalized factor multiplied by the max function. Combining a Nor-Log-MAP algorithm with a LUT-Log-MAP algorithm creates a new kind of LUT-Nor-Log-MAP algorithm. Compared with the LUT-Log-MAP algorithm, the decoding performance of the LUT-Nor-Log-MAP algorithm is close to that of the LUT-Log-MAP algorithm. Based on the decoding method of the Nor-Log-MAP algorithm, we also put forward a normalization functional unit (NFU) for a soft-input soft-output (SISO) decoder computing unit. The simulation results show that the LUT-Nor-Log-MAP algorithm can save about 2.1% of logic resources compared with the LUT-Log-MAP algorithm. Compared with the Max-Log-MAP algorithm, the LUT-Nor-Log-MAP algorithm shows a gain of 0.25~0.5 dB in decoding performance. Using the Cyclone IV platform, the designed Turbo decoder can achieve a throughput of 36 Mbit/s under a maximum clock frequency of 44 MHz.


 
184 viewsCategory: Informatics, Physics
 
Entropy, Vol. 21, Pages 813: Enhanced Electron Scattering upon Ion Relocation in BaVS3 at 69 K (Entropy)
Entropy, Vol. 21, Pages 816: Modelling Thermally Induced Non-Equilibrium Gas Flows by Coupling Kinetic and Extended Thermodynamic Methods (Entropy)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten