MyJournals Home  

RSS FeedsEnergies, Vol. 12, Pages 3193: Evaluation of a Direct Lightning Strike to the 24 kV Distribution Lines in Thailand (Energies)

 
 

20 august 2019 18:02:38

 
Energies, Vol. 12, Pages 3193: Evaluation of a Direct Lightning Strike to the 24 kV Distribution Lines in Thailand (Energies)
 




This paper evaluates the effect of a lightning strike directly on the 24 kV distribution lines in Thailand, where such strikes are one of the main causes of power outages. The voltage across the insulator, and the arrester energy absorbed due to the lightning, need to be analyzed for different grounding distances of the overhead ground wire, ground resistance, lightning impact positions, and lightning current waveforms. Analysis and simulations are conducted using the Alternative Transients Program/Electromagnetic Transients Program (ATP/EMTP) to find the energy absorbed by the arrester and the voltages across the insulator. The results indicate that when surge arresters are not installed, the voltage across the insulator at the end of the line is approximately 1.4 times that in the middle of the line. In addition, the ground resistance and grounding distance of the overhead ground wire affect the voltage across the insulator if the overhead ground wire is struck. When surge arresters are installed, a shorter grounding distance of the overhead ground wire and a lower ground resistance are not always desirable; this is because they reduce the back-flashover rate and the voltage across the insulator if lightning strikes the overhead ground wire. However, lightning strikes to the phase conductor result in high arrester energy and the possibility that the arrester will fail. Furthermore, the tail time of the lightning waveform is a significant variable when considering the energy absorbed by the arrester, whereas the front time is important for the voltage across the insulator. In case lightning strikes directly on the connected point between the overhead lines and the underground cables, the distribution line system is protected only by the lightning arrester at the connection point. The overvoltage at the connection point is lower than the basic impulse level at 24 kV of 125 kV, but the overvoltage at the end of the cable is still more than 125 kV in case the cable is longer than 400 m. When the distribution line system is protected by the lightning arrester at both the connection point and the end of the cable, it results in overvoltage throughout the cable is lower than the critical flashover of insulation. This method is the best way to reduce the failure rate of underground cables and equipment that are connected to the distribution line system.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
61 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 12, Pages 3194: Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures (Energies)
Energies, Vol. 12, Pages 3192: Improving the Energy Efficiency, Limiting Costs and Reducing CO2 Emissions of a Museum Using Geothermal Energy and Energy Management Policies (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn