MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 3075: Rice Husk Hydrolytic Lignin Transformation in Carbonization Process (Molecules)

 
 

24 august 2019 17:02:28

 
Molecules, Vol. 24, Pages 3075: Rice Husk Hydrolytic Lignin Transformation in Carbonization Process (Molecules)
 


Lignin processing products have an extensive using range. Because products properties depend on lignin precursor quality it was interesting to study lignin isolated from rice husk being a large tonnage waste of rice production and its structural transformations during carbonization. Lignin isolated by the thermal hydrolysis method with H2SO4 1 wt % solution and its carbonized products prepared under different carbonization conditions were characterized using elemental analysis, IR, TPD-MS, XRD, TEM, and EPR. It was shown lignin degradation takes place over the wide (220–520 °C) temperature range. Silica presenting in lignin affects the thermal destruction of this polymer. Due to the strong chemical bond with phenolic hydroxylic group it decreases an evaporation of volatile compounds and as a result increases the temperature range of the lignin degradation. Rice husk hydrolytic lignin transformations during carbonization occur with generation of free radicals. Their concentration is decreased after condensation of aromatic rings with carbon polycycles formation, i.e., the graphite-like structure. Quantity and X-ray diffraction characteristics of the graphite-like phase depend on carbonization conditions. Morphology of the lignin-based carbonized products is represented by carbon fibers, carbon and silica nanoparticles, and together with another structure characteristics provides prospective performance properties of lignin-based end products.


 
191 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 3077: Facile Synthesis of a Series of Non-Symmetric Thioethers Including a Benzothiazole Moiety and Their Use as Efficient In Vitro anti-Trypanosoma cruzi Agents (Molecules)
Molecules, Vol. 24, Pages 3074: Structure and Function of Multimeric G-Quadruplexes (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten