MyJournals Home  

RSS FeedsSustainability, Vol. 11, Pages 4879: CO2 Flux Characteristics of Different Plant Communities in a Subtropical Urban Ecosystem (Sustainability)

 
 

6 september 2019 19:02:29

 
Sustainability, Vol. 11, Pages 4879: CO2 Flux Characteristics of Different Plant Communities in a Subtropical Urban Ecosystem (Sustainability)
 


Shanghai, China, is a city that is relatively representative of various cities in China due to its geographical location and socio-economic dynamics. The role of urban vegetation in the carbon cycle of urban developments in these types of cities is now being studied. We focus on identifying which urban plant community types have a greater influence on CO2 flux in cities, thus providing a scientific basis for low-carbon urban greening. Based on the eddy covariance (EC) observation system, ART Footprint Tool, plant inventory, and ecological community classification, we show that the CO2 flux characteristics of different plant communities vary temporally. The carbon sink duration during summer was the longest (up to 10 h) and the carbon sink duration was the shortest during winter (7.5 h). In addition, we discovered that the CO2 flux contribution rates of different plant community types are distinct. The annual average CO2 contribution rates of the Cinnamomum camphora-Trachycarpus fortunei community and the Metasequoia glyptostroboides+Sabina chinensis community are 11.88% and 0.93%, respectively. The CO2 flux contribution rate of the same plant community differs according to season. The CO2 contribution rate of the Cinnamomum camphora-Trachycarpus fortunei community exhibits local maxima during winter and summer, with a maximum difference of 11.16%. In contrast, the Metasequoia glyptostroboides+Sabina chinensis community has a CO2 contribution rate of 0.35% during the same period. In general, summer is the season with the lowest CO2 flux contribution rate of plant communities, and winter is the season with the highest CO2 flux contribution rate. However, the Cinnamomum camphora+Salix babylonica community and the Cinnamomum camphora+Sabina chinensis community present the opposite pattern. Finally, the diurnal variation characteristics of CO2 flux in different communities have the same trend, but the peak values differ significantly. Overall, daily CO2 flux peak value of the Metasequoia glyptostroboides community and the Cinnamomum camphora-Trachycarpus fortunei community indicate that these two plant communities exhibit a strong capacity for CO2 absorption in the study area. According to these research results, urban greening efforts in subtropical climates can increase the green space covered by the Cinnamomum camphora-Trachycarpus fortunei and the Metasequoia glyptostroboides community types when urban greening, so as to appropriately reduce the CO2 emitted into the atmosphere.


 
196 viewsCategory: Ecology
 
Sustainability, Vol. 11, Pages 4881: Business Model Design for Latecomers in Biopharmaceutical Industry: The Case of Korean Firms (Sustainability)
Sustainability, Vol. 11, Pages 4878: Managerial Overconfidence and Cost Behavior of R&D Expenditures (Sustainability)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Ecology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten