MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 2981: Silver Nanoparticle-Based Assay for the Detection of Immunoglobulin Free Light Chains (Materials)

 
 

15 september 2019 09:03:18

 
Materials, Vol. 12, Pages 2981: Silver Nanoparticle-Based Assay for the Detection of Immunoglobulin Free Light Chains (Materials)
 


There is a wide spectrum of malignant diseases that are connected with the clonal proliferation of plasma cells, which cause the production of complete immunoglobulins or their fragments (heavy or light immunoglobulin chains). These proteins may accumulate in tissues, leading to end organ damage. The quantitative determination of immunoglobulin free light chains (FLCs) is considered to be the gold standard in the detection and treatment of multiple myeloma (MM) and amyloid light-chain (AL) amyloidosis. In this study, a silver nanoparticle-based diagnostic tool for the quantitation of FLCs is presented. The optimal test conditions were achieved when a metal nanoparticle (MNP) was covered with 10 particles of an antibody and conjugated by 5–50 protein antigen particles (FLCs). The formation of the second antigen protein corona was accompanied by noticeable changes in the surface plasmon resonance spectra of the silver nanoparticles (AgNPs), which coincided with an increase of the hydrodynamic diameter and increase in the zeta potential, as demonstrated by dynamic light scattering (DLS). A decrease of repulsion forces and the formation of antigen–antibody bridges resulted in the agglutination of AgNPs, as demonstrated by transmission electron microscopy and the direct formation of AgNP aggregates. Antigen-conjugated AgNPs clusters were also found by direct observation using green laser light scattering. The parameters of the specific immunochemical aggregation process consistent with the sizes of AgNPs and the protein particles that coat them were confirmed by four physical methods, yielding complementary data concerning a clinically useful AgNPs aggregation test.


 
185 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 2983: Sensitivity Analysis of the Frequency Response Function of Carbon-Fiber-Reinforced Plastic Specimens for Different Direction of Carbon Fiber as Well as Spectral Loading Pattern (Materials)
Materials, Vol. 12, Pages 2982: Mechanical and Fracture Properties of Fly Ash Geopolymer Concrete Addictive with Calcium Aluminate Cement (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten