MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 3039: The Use of Biodrying to Prevent Self-Heating of Alternative Fuel (Materials)

 
 

19 september 2019 11:00:26

 
Materials, Vol. 12, Pages 3039: The Use of Biodrying to Prevent Self-Heating of Alternative Fuel (Materials)
 


Alternative fuels (refuse-derived fuels—RDF) have been a substitute for fossil fuels in cement production for many years. RDF are produced from various materials characterized by high calorific value. Due to the possibility of self-ignition in the pile of stored alternative fuel, treatments are carried out to help protect entrepreneurs against material losses and employees against loss of health or life. The objective of the research was to assess the impact of alternative fuel biodrying on the ability to self-heat this material. Three variants of materials (alternative fuel produced on the basis of mixed municipal solid waste (MSW) and on the basis of bulky waste (mainly varnished wood and textiles) and residues from selective collection waste (mainly plastics and tires) were adopted for the analysis. The novelty of the proposed solution consists in processing the analyzed materials inside the innovative ecological waste apparatus bioreactor (EWA), which results in increased process efficiency and shortening its duration. The passive thermography technique was used to assess the impact of alternative fuel biodrying on the decrease in the self-heating ability of RDF. As a result of the conducted analyses, it was clear that the biodrying process inhibited the self-heating of alternative fuel. The temperature of the stored fuel reached over 60 °C before the biodrying process. However, after the biodrying process, the maximum temperatures in each of the variants were about 30 °C, which indicates a decrease in the activity of microorganisms and the lack of self-ignition risk. The maximum temperatures obtained (>71 °C), the time to reach them (≈4 h), and the duration of the thermophilic phase (≈65 h) are much shorter than in the studies of other authors, where the duration of the thermophilic phase was over 80 h.


 
185 viewsCategory: Chemistry, Physics
 
Materials, Vol. 12, Pages 3040: Structural Safety Evaluation of Precast, Prestressed Concrete Deck Slabs Cast Using 120-MPa High-Performance Concrete with a Reinforced Joint (Materials)
Materials, Vol. 12, Pages 3038: Nitrogen-Doped Cu2O Thin Films for Photovoltaic Applications (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten