MyJournals Home  

RSS FeedsMaterials, Vol. 12, Pages 3318: Mechanical and Acoustic Emission Behavior of Gangue Concrete under Uniaxial Compression (Materials)

 
 

11 october 2019 22:02:48

 
Materials, Vol. 12, Pages 3318: Mechanical and Acoustic Emission Behavior of Gangue Concrete under Uniaxial Compression (Materials)
 


The application of gangue concrete can be an effective method to solve the massive gangue heap and shortage of raw materials of concrete by replacing the gravel and river sand with crushed gangue. An Acoustic emission (AE) is one of the non-destructive testing methods that can be used for damage detection of the gangue concrete structure. However, there are obvious mechanics differences between gangue and gravel/river sand, so the previous analysis methods of AE signal for concrete structure detection, mainly applied to ordinary concrete, are not suitable for gangue concrete. Based on this, the physical and mechanical characteristics of coal gangue were studied, and the uniaxial compressive test, along with AE monitoring of gangue concrete, was conducted in this paper. The differences in AE behavior between gangue concrete and ordinary concrete were also analyzed. The mechanical test result shows that the compressive strength of gangue concrete can reach 35–40 MPa. Comparing with ordinary concrete, gangue concrete has larger initial porosity and abrupt rupture. Additionally, the accumulative energy growth rate of gangue concrete has two peak values before the peak load, while ordinary concrete only has one. This difference can be used to forecast damage of gangue concrete structure by AE technology. This paper shows the possibility of making concrete by coal gangue, and the possibility of identifying its damage degree with the use of acoustic emission technology.


 
132 viewsCategory: Chemistry, Physics
 
[ASAP] Exploring the Forces Contributing to Noncovalent Bonding by Microwave Spectroscopy and Structural Characterization of Gas-Phase Heterodimers of Protic Acids with Haloethylenes (Journal of Physical Chemistry A)
Materials, Vol. 12, Pages 3317: Experimental Study on the Energy-Release Characteristics of Fine-Grained Fe/Al Energetic Jets under Impact Loading (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten