MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 4533: Perturbation Analysis of a Multiple Layer Guided Love Wave Sensor in a Viscoelastic Environment (Sensors)

 
 

18 october 2019 20:00:07

 
Sensors, Vol. 19, Pages 4533: Perturbation Analysis of a Multiple Layer Guided Love Wave Sensor in a Viscoelastic Environment (Sensors)
 


Surface acoustic wave sensors have the advantage of fast response, low-cost, and wireless interfacing capability and they have been used in the medical analysis, material characterization, and other application fields that immerse the device under a liquid environment. The theoretical analysis of the single guided layer shear horizontal acoustic wave based on the perturbation theory has seen developments that span the past 20 years. However, multiple guided layer systems under a liquid environment have not been thoroughly analyzed by existing theoretical models. A dispersion equation previously derived from a system of three rigidly coupled elastic mass layers is extended and developed in this study with multiple guided layers to analyze how the liquid layer’s properties affect the device’s sensitivity. The combination of the multiple layers to optimize the sensitivity of an acoustic wave sensor is investigated in this study. The Maxwell model of viscoelasticity is applied to represent the liquid layer. A thorough analysis of the complex velocity due to the variations of the liquid layer’s properties and thickness is derived and discussed to optimize multilayer Surface acoustic wave (SAW) sensor design. Numerical simulation of the sensitivity with a liquid layer on top of two guided layers is investigated in this study as well. The parametric investigation was conducted by varying the thicknesses for the liquid layer and the guided layers. The effect of the liquid layer viscosity on the sensitivity of the design is also presented in this study. The two guided layer device can achieve higher sensitivity than the single guided layer counterpart in a liquid environment by optimizing the second guided layer thickness. This perturbation analysis is valuable for Love wave sensor optimization to detect the liquid biological samples and analytes.


 
216 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 4535: Robust Estimators in Geodetic Networks Based on a New Metaheuristic: Independent Vortices Search (Sensors)
Sensors, Vol. 19, Pages 4532: Assisted Grasping in Individuals with Tetraplegia: Improving Control through Residual Muscle Contraction and Movement (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten