MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 2691: Hyperspectral Pansharpening Based on Spectral Constrained Adversarial Autoencoder (Remote Sensing)

 
 

19 november 2019 05:02:45

 
Remote Sensing, Vol. 11, Pages 2691: Hyperspectral Pansharpening Based on Spectral Constrained Adversarial Autoencoder (Remote Sensing)
 


Hyperspectral (HS) imaging is conducive to better describing and understanding the subtle differences in spectral characteristics of different materials due to sufficient spectral information compared with traditional imaging systems. However, it is still challenging to obtain high resolution (HR) HS images in both the spectral and spatial domains. Different from previous methods, we first propose spectral constrained adversarial autoencoder (SCAAE) to extract deep features of HS images and combine with the panchromatic (PAN) image to competently represent the spatial information of HR HS images, which is more comprehensive and representative. In particular, based on the adversarial autoencoder (AAE) network, the SCAAE network is built with the added spectral constraint in the loss function so that spectral consistency and a higher quality of spatial information enhancement can be ensured. Then, an adaptive fusion approach with a simple feature selection rule is induced to make full use of the spatial information contained in both the HS image and PAN image. Specifically, the spatial information from two different sensors is introduced into a convex optimization equation to obtain the fusion proportion of the two parts and estimate the generated HR HS image. By analyzing the results from the experiments executed on the tested data sets through different methods, it can be found that, in CC, SAM, and RMSE, the performance of the proposed algorithm is improved by about 1.42%, 13.12%, and 29.26% respectively on average which is preferable to the well-performed method HySure. Compared to the MRA-based method, the improvement of the proposed method in in the above three indexes is 17.63%, 0.83%, and 11.02%, respectively. Moreover, the results are 0.87%, 22.11%, and 20.66%, respectively, better than the PCA-based method, which fully illustrated the superiority of the proposed method in spatial information preservation. All the experimental results demonstrate that the proposed method is superior to the state-of-the-art fusion methods in terms of subjective and objective evaluations.


 
200 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 2693: Modeling and Assessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution (Remote Sensing)
Remote Sensing, Vol. 11, Pages 2690: Fine-Grained Classification of Hyperspectral Imagery Based on Deep Learning (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten