MyJournals Home  

RSS FeedsNutrients, Vol. 11, Pages 2850: An In Vitro Study on the Combination Effect of Metformin and N-Acetyl Cysteine against Hyperglycaemia-Induced Cardiac Damage (Nutrients)

 
 

21 november 2019 19:04:51

 
Nutrients, Vol. 11, Pages 2850: An In Vitro Study on the Combination Effect of Metformin and N-Acetyl Cysteine against Hyperglycaemia-Induced Cardiac Damage (Nutrients)
 




Chronic hyperglycaemia is a major risk factor for diabetes-induced cardiovascular dysfunction. In a hyperglycaemic state, excess production of reactive oxygen species (ROS), coupled with decreased levels of glutathione, contribute to increased lipid peroxidation and subsequent myocardial apoptosis. N-acetylcysteine (NAC) is a thiol-containing antioxidant known to protect against hyperglycaemic-induced oxidative stress by promoting the production of glutathione. While the role of NAC against oxidative stress-related cardiac dysfunction has been documented, to date data is lacking on its beneficial effect when used with glucose lowering therapies, such as metformin (MET). Thus, the aim of the study was to better understand the cardioprotective effect of NAC plus MET against hyperglycaemia-induced cardiac damage in an H9c2 cardiomyoblast model. H9c2 cardiomyoblasts were exposed to chronic high glucose concentrations for 24 h. Thereafter, cells were treated with MET, NAC or a combination of MET and NAC for an additional 24 h. The combination treatment mitigated high glucose-induced oxidative stress by improving metabolic activity i.e. ATP activity, glucose uptake (GU) and reducing lipid accumulation. The combination treatment was as effective as MET in diminishing oxidative stress, lipid peroxidation and apoptosis. We observed that the combination treatment prevented hyperglycaemic-induced cardiac damage by increasing GLUT4 expression and mitigating lipid accumulation via phosphorylation of both AMPK and AKT, while decreasing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), as well as protein kinase C (PKC), a known activator of insulin receptor substrate-1 (IRS-1), via phosphorylation at Ser307. On this basis, the current results support the notion that the combination of NAC and MET can shield the diabetic heart against impaired glucose utilization and therefore its long-term protective effect warrants further investigation.


Del.icio.us Digg Facebook Google StumbleUpon Twitter
 
45 viewsCategory: Nutrition
 
Nutrients, Vol. 11, Pages 2851: Tryptophan Intake and Tryptophan Losses in Hemodialysis Patients: A Balance Study (Nutrients)
Nutrients, Vol. 11, Pages 2862: Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration (Nutrients)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Nutrition

Use these buttons to bookmark us:
Del.icio.us Digg Facebook Google StumbleUpon Twitter


Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn