MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 4460: Synthesis and Pharmacological Evaluation of Hybrids Targeting Opioid and Neurokinin Receptors (Molecules)

 
 

5 december 2019 17:00:34

 
Molecules, Vol. 24, Pages 4460: Synthesis and Pharmacological Evaluation of Hybrids Targeting Opioid and Neurokinin Receptors (Molecules)
 


Morphine, which acts through opioid receptors, is one of the most efficient analgesics for the alleviation of severe pain. However, its usefulness is limited by serious side effects, including analgesic tolerance, constipation, and dependence liability. The growing awareness that multifunctional ligands which simultaneously activate two or more targets may produce a more desirable drug profile than selectively targeted compounds has created an opportunity for a new approach to developing more effective medications. Here, in order to better understand the role of the neurokinin system in opioid-induced antinociception, we report the synthesis, structure–activity relationship, and pharmacological characterization of a series of hybrids combining opioid pharmacophores with either substance P (SP) fragments or neurokinin receptor (NK1) antagonist fragments. On the bases of the in vitro biological activities of the hybrids, two analogs, opioid agonist/NK1 antagonist Tyr-[d-Lys-Phe-Phe-Asp]-Asn-d-Trp-Phe-d-Trp-Leu-Nle-NH2 (2) and opioid agonist/NK1 agonist Tyr-[d-Lys-Phe-Phe-Asp]-Gln-Phe-Phe-Gly-Leu-Met-NH2 (4), were selected for in vivo tests. In the writhing test, both hybrids showed significant an antinociceptive effect in mice, while neither of them triggered the development of tolerance, nor did they produce constipation. No statistically significant differences in in vivo activity profiles were observed between opioid/NK1 agonist and opioid/NK1 antagonist hybrids.


 
205 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 4462: Fluorescence Polarization Immunoassay for Determination of Enrofloxacin in Pork Liver and Chicken (Molecules)
Molecules, Vol. 24, Pages 4459: Simultaneous Determination of Etomidate and Its Major Metabolite, Etomidate Acid, in Urine Using Dilute and Shoot Liquid Chromatography-Tandem Mass Spectrometry (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten