MyJournals Home  

RSS FeedsRemote Sensing, Vol. 11, Pages 2947: Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions (Remote Sensing)

 
 

9 december 2019 18:00:04

 
Remote Sensing, Vol. 11, Pages 2947: Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions (Remote Sensing)
 


The image spectral data, particularly hyperspectral data, has been proven as an efficient data source for mapping of the spatial variability of soil organic carbon (SOC). Multispectral satellite data are readily available and cost-effective sources of spectral data compared to costly and technically demanding processing of hyperspectral data. Moreover, their continuous acquisition allows to develop a composite from time-series, increasing the spatial coverage of SOC maps. In this study, an evaluation of the prediction ability of models assessing SOC using real multispectral remote sensing data from different platforms was performed. The study was conducted on a study plot (1.45 km2) in the Chernozem region of South Moravia (Czechia). The adopted methods included field sampling and predictive modeling using satellite multispectral Sentinel-2, Landsat-8, and PlanetScope data, and multispectral UAS Parrot Sequoia data. Furthermore, the performance of a soil reflectance composite image from Sentinel-2 data was analyzed. Aerial hyperspectral CASI 1500 and SASI 600 data was used as a reference. Random forest, support vector machine, and the cubist regression technique were applied in the predictive modeling. The prediction accuracy of models using multispectral data, including Sentinel-2 composite, was lower (RPD range from 1.16 to 1.65; RPIQ range from 1.53 to 2.17) compared to the reference model using hyperspectral data (RPD = 2.26; RPIQ = 3.34). The obtained results show very similar prediction accuracy for all spaceborne sensors (Sentinel-2, Landsat-8, and PlanetScope). However, the spatial correlation between the reference mapping results obtained from the hyperspectral data and other maps using multispectral data was moderately strong. UAS sensors and freely available satellite multispectral data can represent an alternative cost-effective data source for remote SOC mapping on the local scale.


 
282 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 11, Pages 2948: A Weighted SVM-Based Approach to Tree Species Classification at Individual Tree Crown Level Using LiDAR Data (Remote Sensing)
Remote Sensing, Vol. 11, Pages 2946: VAT Method for Visualization of Mass Movement Features: An Alternative to Hillshaded DEM (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten