MyJournals Home  

RSS FeedsTwo uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence [Microbiology] (Journal of Biological Chemistry)

 
 

13 december 2019 11:02:47

 
Two uptake hydrogenases differentially interact with the aerobic respiratory chain during mycobacterial growth and persistence [Microbiology] (Journal of Biological Chemistry)
 


To persist when nutrient sources are limited, aerobic soil bacteria metabolize atmospheric hydrogen (H2). This process is the primary sink in the global H2 cycle and supports the productivity of microbes in oligotrophic environments. H2-metabolizing bacteria possess [NiFe] hydrogenases that oxidize H2 to subatmospheric concentrations. The soil saprophyte Mycobacterium smegmatis has two such [NiFe] hydrogenases, designated Huc and Hhy, that belong to different phylogenetic subgroups. Both Huc and Hhy are oxygen-tolerant, oxidize H2 to subatmospheric concentrations, and enhance bacterial survival during hypoxia and carbon limitation. Why does M. smegmatis require two hydrogenases with a seemingly similar function? In this work, we resolved this question by showing that Huc and Hhy are differentially expressed, localized, and integrated into the respiratory chain. Huc is active in late exponential and early stationary phases, supporting energy conservation during mixotrophic growth and transition into dormancy. In contrast, Hhy is most active during long-term persistence, providing energy for maintenance processes following carbon exhaustion. We also show that Huc and Hhy are obligately linked to the aerobic respiratory chain via the menaquinone pool and are differentially affected by respiratory uncouplers. Consistently, these two enzymes interacted differentially with the respiratory terminal oxidases. Huc exclusively donated electrons to, and possibly physically associated with, the proton-pumping cytochrome bcc-aa3 supercomplex. In contrast the more promiscuous Hhy also provided electrons to the cytochrome bd oxidase complex. These results indicate that, despite their similar characteristics, Huc and Hhy perform distinct functions during mycobacterial growth and survival.


 
200 viewsCategory: Biochemistry
 
Cytoplasmic dsRNA induces the expression of OCT3/4 and NANOG mRNAs in differentiated human cells [Microbiology] (Journal of Biological Chemistry)
Proper secretion of the serpin antithrombin relies strictly on thiol-dependent quality control [Protein Structure and Folding] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten