MyJournals Home  

RSS FeedsMaterials, Vol. 11, Pages 2047: Feasibility of a Three-Dimensional Porous Uncalcined and Unsintered Hydroxyapatite/poly-d/l-lactide Composite as a Regenerative Biomaterial in Maxillofacial Surgery (Materials)

 
 

20 october 2018 15:00:06

 
Materials, Vol. 11, Pages 2047: Feasibility of a Three-Dimensional Porous Uncalcined and Unsintered Hydroxyapatite/poly-d/l-lactide Composite as a Regenerative Biomaterial in Maxillofacial Surgery (Materials)
 


This study evaluated the feasibility of a novel three-dimensional (3D) porous composite of uncalcined and unsintered hydroxyapatite (u-HA) and poly-d/l-lactide (PDLLA) (3D-HA/PDLLA) for the bony regenerative biomaterial in maxillofacial surgery, focusing on cellular activities and osteoconductivity properties in vitro and in vivo. In the in vitro study, we assessed the proliferation and ingrowth of preosteoblastic cells (MC3T3-E1 cells) in 3D-HA/PDLLA biomaterials using 3D cell culture, and the results indicated enhanced bioactive proliferation. After osteogenic differentiation of those cells on 3D-HA/PDLLA, the osteogenesis marker genes runt-related transcription factor-2 (Runx2), and Sp7 (Osterix) were upregulated. For the in vivo study, we evaluated the utility of 3D-HA/PDLLA biomaterials compared to the conventional bone substitute of beta-tricalcium phosphate (β-TCP) in rats with critical mandibular bony defects. The implantation of 3D-HA/PDLLA biomaterials resulted in enhanced bone regeneration, by inducing high osteoconductivity as well as higher β-TCP levels. Our study thus showed that the novel composite, 3D-HA/PDLLA, is an excellent bioactive/bioresorbable biomaterial for use as a cellular scaffold, both in vitro and in vivo, and has utility in bone regenerative therapy, such as for patients with irregular maxillofacial bone defects.


 
142 viewsCategory: Chemistry, Physics
 
Materials, Vol. 11, Pages 2048: Experimental Research on the Mechanical Properties of Tailing Microcrystalline Foam Glass (Materials)
Materials, Vol. 11, Pages 2046: Microstructure and Mechanical Properties of ZrB2-HfC Ceramics Influenced by HfC Addition (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten