MyJournals Home  

RSS FeedsIJMS, Vol. 20, Pages 2981: HNF4? and CDX2 Regulate Intestinal YAP1 Promoter Activity (International Journal of Molecular Sciences)


18 june 2019 19:00:22

IJMS, Vol. 20, Pages 2981: HNF4? and CDX2 Regulate Intestinal YAP1 Promoter Activity (International Journal of Molecular Sciences)

The Hippo pathway is important for tissue homeostasis, regulation of organ size andgrowth in most tissues. The co-transcription factor yes-associated protein 1 (YAP1) serves as a maindownstream effector of the Hippo pathway and its dysregulation increases cancer development andblocks colonic tissue repair. Nevertheless, little is known about the transcriptional regulation ofYAP1 in intestinal cells. The aim of this study to identify gene control regions in the YAP1 gene andtranscription factors important for intestinal expression. Bioinformatic analysis of caudal typehomeobox 2 (CDX2) and hepatocyte nuclear factor 4 alpha (HNF4α) chromatin immunoprecipitatedDNA from differentiated Caco-2 cells revealed potential intragenic enhancers in the YAP1 gene.Transfection of luciferase-expressing YAP1 promoter-reporter constructs containing the potentialenhancer regions validated one potent enhancer of the YAP1 promoter activity in Caco-2 and T84cells. Two potential CDX2 and one HNF4α binding sites were identified in the enhancer by in silicotranscription factor binding site analysis and protein-DNA binding was confirmed in vitro usingelectrophoretic mobility shift assay. It was found by chromatin immunoprecipitation experimentsthat CDX2 and HNF4α bind to the YAP1 enhancer in Caco-2 cells. These results reveal a previouslyunknown enhancer of the YAP1 promoter activity in the YAP1 gene, with importance for highexpression levels in intestinal epithelial cells. Additionally, CDX2 and HNF4α binding areimportant for the YAP1 enhancer activity in intestinal epithelial cells. Digg Facebook Google StumbleUpon Twitter
33 viewsCategory: Biochemistry, Biophysics, Molecular Biology
IJMS, Vol. 20, Pages 2982: Diagnostic and Treatment Approaches Involving Transthyretin in Amyloidogenic Diseases (International Journal of Molecular Sciences)
IJMS, Vol. 20, Pages 2980: Potential Mechanisms of T Cell-Mediated and Eosinophil-Independent Bronchial Hyperresponsiveness (International Journal of Molecular Sciences)
blog comments powered by Disqus
The latest issues of all your favorite science journals on one page


Register | Retrieve


Molecular Biology

Use these buttons to bookmark us: Digg Facebook Google StumbleUpon Twitter

Valid HTML 4.01 Transitional
Copyright © 2008 - 2019 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Travel Photos Nachrichten Indigonet Finances Leer Mandarijn