MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 4195: A Study of the Influence of the HCl Concentration on the Composition and Structure of (Hydroxy)Arylsiloxanes from the Hydrolysis-Condensation Reaction of Aryltrichlorosilanes (Molecules)

 
 

19 november 2019 15:03:12

 
Molecules, Vol. 24, Pages 4195: A Study of the Influence of the HCl Concentration on the Composition and Structure of (Hydroxy)Arylsiloxanes from the Hydrolysis-Condensation Reaction of Aryltrichlorosilanes (Molecules)
 


The hydrolysis–condensation reactions of m-tolyl, m-chlorophenyl, and α-naphtyl-trichlorsilanes, (1, 2, and 3, respectively) in water-acetone solutions were examined for how they were influenced by the change in the concentration of HCl (CHCl). The composition of the products was monitored by 29Si NMR spectroscopy and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). The acidity of the medium was shown to affect the yields of the products, and so, what products were formed. For 3, e.g., APCI-MS showed peaks of α-naphtyl-T8 and α-naphtyl-T10 as the most abundant in the spectra taken after 48 and 240 h for the reaction conducted at CHCl = 0.037 mol L−1. Unlike this, at CHCl = 0.15 mol L−1, those peaks were of [α-naphtyl(HO)2SiO]2(α-naphtyl)(HO)Si and/or [α-naphtyl(HO)Si]3, [α-naphtyl(HO)Si]4,5, and α-naphtyl-T8 after 192 h. However, at both CHCl values, the main product (and an intermediate) after 24 h was trans-1,1,3,3-tetrahydroxy-1,3-di-α-naphtyldisiloxane. It was isolated and its structure established by 1H-, 29Si-NMR, and X-ray powder diffraction.


 
207 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 4196: Synthesis and In Vitro Growth Inhibition of 2-Allylphenol Derivatives Against Phythopthora cinnamomi Rands (Molecules)
Molecules, Vol. 24, Pages 4194: Antioxidant System and Biomolecules Alteration in Pisum sativum under Heavy Metal Stress and Possible Alleviation by 5-Aminolevulinic Acid (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten