MyJournals Home  

RSS FeedsMolecules, Vol. 24, Pages 4194: Antioxidant System and Biomolecules Alteration in Pisum sativum under Heavy Metal Stress and Possible Alleviation by 5-Aminolevulinic Acid (Molecules)

 
 

19 november 2019 15:03:12

 
Molecules, Vol. 24, Pages 4194: Antioxidant System and Biomolecules Alteration in Pisum sativum under Heavy Metal Stress and Possible Alleviation by 5-Aminolevulinic Acid (Molecules)
 


Environmental pollution is the most serious problem that affects crop productivity worldwide. Pisum sativum is a leguminous plant that is cultivated on a large scale in the Nile Delta of Egypt as a winter crop, and many of the cultivated fields irrigated with drainage water that contained many pollutants including heavy metals. The present research aimed to investigate the impact of Cd and Ni on the biochemical and physiological processes in P. sativum and evaluate the potential alleviation of their toxicity by 5-aminolevulinic acid (ALA). Seedlings of P. sativum were grown in Hoagland solution treated with CdCl2 or NiCl2 for 72 h in the growth chamber. Hydrogen peroxide, lipid peroxidation, protein carbonylation, reduced glutathione, oxidized glutathione, proline, phenolics, antioxidant enzymes, as well as Cd and Ni concentrations were measured at 0, 12, 24, 36, 48, 72 h. An experiment of alleviation was conducted where ALA was added to the growth solution at a concentration of 200 µM coupled with 100 µM of either CdCl2 or NiCl2. Hydrogen peroxide, lipid peroxidation, protein carbonylation, reduced glutathione, oxidized glutathione, proline, and phenolics were induced due to the toxicity of Cd and Ni. The activities of antioxidant enzymes [NADH-oxidase (EC: 1.6.3.1), ascorbate peroxidase (EC: 1.11.1.11), glutathione reductase (EC: 1.6.4.2), superoxide dismutase (EC: 1.15.1.1), and catalase (EC: 1.11.1.6)] were induced under the treatments of both metals. On the other hand, the soluble protein decreased gradually depending upon the time of exposure to the heavy metals. The concentration of Cd and Ni in the leaves treated plants increased in time of exposure dependent manner, while their contents remained within the acceptable limits. The addition of ALA decreased the oxidative stress in treated P. sativum plants. The results revealed the significance of using ALA in the cultivation of P. sativum might improve its tolerance against heavy metal stress.


 
223 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 24, Pages 4195: A Study of the Influence of the HCl Concentration on the Composition and Structure of (Hydroxy)Arylsiloxanes from the Hydrolysis-Condensation Reaction of Aryltrichlorosilanes (Molecules)
Molecules, Vol. 24, Pages 4193: Identification and Monitoring of Amomi Fructus and its Adulterants Based on DNA Barcoding Analysis and Designed DNA Markers (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten