MyJournals Home  

RSS Feeds(Pro)renin receptor-mediated myocardial injury, apoptosis, and inflammatory response in rats with diabetic cardiomyopathy [Metabolism] (Journal of Biological Chemistry)

 
 

17 may 2019 10:01:42

 
(Pro)renin receptor-mediated myocardial injury, apoptosis, and inflammatory response in rats with diabetic cardiomyopathy [Metabolism] (Journal of Biological Chemistry)
 


Excessive activation of the renin-angiotensin system (RAS) in diabetic cardiomyopathy (DCM) provokes a series of structural and functional abnormalities, and causes ventricular remodeling and heart failure in diabetes. (Pro)renin receptor (PRR) is a component of the RAS and has been reported to be up-regulated in some cardiovascular diseases. Furthermore, PRR blockade in some cardiovascular diseases, such as myocardial infarction and hypertension, has been demonstrated to reverse their pathogenesis. However, there have been few studies about the function of PRR in the pathogenesis of DCM. In this study, we hypothesized that PRR is involved in the pathogenesis of DCM and mediates myocardial injury in DCM. To explore the role of PRR in DCM, we evaluated the effects of PRR overexpression and knockdown on the DCM phenotype in vivo and in vitro. The results show that PRR overexpression exacerbates myocardial injury and the inflammatory response in rats with DCM. Conversely, PRR knockdown alleviates myocardial fibrosis, apoptosis, and the inflammatory response, reversing the cardiac dysfunction in rats with DCM. In cell experiments, PRR overexpression also up-regulated the protein expression of collagen I and fibronectin, aggravated the inflammatory response, and increased the production of reactive oxygen species, whereas PRR knockdown had the opposite effect. Thus, PRR mediates myocardial injury, apoptosis, and the inflammatory response, likely through a PRR/extracellular signal-regulated kinase/reactive oxygen species pathway.


 
84 viewsCategory: Biochemistry
 
The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress [Signal Transduction] (Journal of Biological Chemistry)
Novel MASP-2 inhibitors developed via directed evolution of human TFPI1 are potent lectin pathway inhibitors [Molecular Bases of Disease] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten