MyJournals Home  

RSS FeedsSensors, Vol. 19, Pages 3830: Online Workload Allocation via Fog-Fog-Cloud Cooperation to Reduce IoT Task Service Delay (Sensors)

 
 

5 september 2019 15:03:48

 
Sensors, Vol. 19, Pages 3830: Online Workload Allocation via Fog-Fog-Cloud Cooperation to Reduce IoT Task Service Delay (Sensors)
 


Fog computing has recently emerged as an extension of cloud computing in providing high-performance computing services for delay-sensitive Internet of Things (IoT) applications. By offloading tasks to a geographically proximal fog computing server instead of a remote cloud, the delay performance can be greatly improved. However, some IoT applications may still experience considerable delays, including queuing and computation delays, when huge amounts of tasks instantaneously feed into a resource-limited fog node. Accordingly, the cooperation among geographically close fog nodes and the cloud center is desired in fog computing with the ever-increasing computational demands from IoT applications. This paper investigates a workload allocation scheme in an IoT–fog–cloud cooperation system for reducing task service delay, aiming at satisfying as many as possible delay-sensitive IoT applications’ quality of service (QoS) requirements. To this end, we first formulate the workload allocation problem in an IoT-edge-cloud cooperation system, which suggests optimal workload allocation among local fog node, neighboring fog node, and the cloud center to minimize task service delay. Then, the stability of the IoT-fog-cloud queueing system is theoretically analyzed with Lyapunov drift plus penalty theory. Based on the analytical results, we propose a delay-aware online workload allocation and scheduling (DAOWA) algorithm to achieve the goal of reducing long-term average task serve delay. Theoretical analysis and simulations have been conducted to demonstrate the efficiency of the proposal in task serve delay reduction and IoT-fog-cloud queueing system stability.


 
215 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 19, Pages 3831: Multi-Mission Earth Observation Data Processing System (Sensors)
Sensors, Vol. 19, Pages 3829: Distributed Joint Cooperative Self-Localization and Target Tracking Algorithm for Mobile Networks (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten