MyJournals Home  

RSS FeedsMaterials, Vol. 13, Pages 418: Areal Surface Roughness Optimization of Maraging Steel Parts Produced by Hybrid Additive Manufacturing (Materials)

 
 

16 january 2020 15:04:26

 
Materials, Vol. 13, Pages 418: Areal Surface Roughness Optimization of Maraging Steel Parts Produced by Hybrid Additive Manufacturing (Materials)
 


We report on an experimental study and statistical optimization of the surface roughness using design of experiments and the Taguchi method for parts made of 1.2709 maraging steel. We employ a hybrid additive manufacturing approach that combines additive manufacturing by selective laser melting with subtractive manufacturing using milling in an automated process within a single machine. Input parameters such as laser power, scan speed, and hatching distance have been varied in order to improve surface quality of unmachined surfaces. Cutting speed, feed per tooth, and radial depth of cut have been varied to optimize surface roughness of the milled surfaces. The surfaces of the samples were characterized using 3D profilometry. Scan speed was determined as the most important parameter for non-machined surfaces; radial depth of cut was found to be the most significant parameter for milled surfaces. Areal surface roughness S a could be reduced by up to 40% for unmachined samples and by 23% for milled samples as compared to the prior state of the art.


 
84 viewsCategory: Chemistry, Physics
 
Materials, Vol. 13, Pages 417: Solution Processable CrN Thin Films: Thickness-Dependent Electrical Transport Properties (Materials)
Materials, Vol. 13, Pages 416: Technology of Polymer Microtips` Manufacturing on the Ends of Multi-Mode Optical Fibers (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten