MyJournals Home  

RSS FeedsSensors, Vol. 20, Pages 575: Iterative Analog-Digital Multi-User Equalizer for Wideband Millimeter Wave Massive MIMO Systems (Sensors)

 
 

20 january 2020 22:03:02

 
Sensors, Vol. 20, Pages 575: Iterative Analog-Digital Multi-User Equalizer for Wideband Millimeter Wave Massive MIMO Systems (Sensors)
 


Most of the previous work on hybrid transmit and receive beamforming focused on narrowband channels. Because the millimeter wave channels are expected to be wideband, it is crucial to propose efficient solutions for frequency-selective channels. In this regard, this paper proposes an iterative analog–digital multi-user equalizer scheme for the uplink of wideband millimeter-wave massive multiple-input-multiple-output (MIMO) systems. By iterative equalizer we mean that both analog and digital parts are updated using as input the estimates obtained at the previous iteration. The proposed iterative analog–digital multi-user equalizer is designed by minimizing the sum of the mean square error of the data estimates over the subcarriers. We assume that the analog part is fixed for all subcarriers while the digital part is computed on a per subcarrier basis. Due to the complexity of the resulting optimization problem, a sequential approach is proposed to compute the analog phase shifters values for each radio frequency (RF) chain. We also derive an accurate, semi-analytical approach for obtaining the bit error rate (BER) of the proposed hybrid system. The proposed solution is compared with other hybrid equalizer schemes, recently designed for wideband millimeter-wave (mmWave) massive MIMO systems. The simulation results show that the performance of the developed analog–digital multi-user equalizer is close to full-digital counterpart and outperforms the previous hybrid approach.


 
207 viewsCategory: Chemistry, Physics
 
Sensors, Vol. 20, Pages 576: Acknowledgement to Reviewers of Sensors in 2019 (Sensors)
Sensors, Vol. 20, Pages 574: Microseismic Event Location by Considering the Influence of the Empty Area in an Excavated Tunnel (Sensors)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten