MyJournals Home  

RSS FeedsRemote Sensing, Vol. 12, Pages 365: A Parallax Shift Effect Correction Based on Cloud Height for Geostationary Satellites and Radar Observations (Remote Sensing)

 
 

22 january 2020 16:00:46

 
Remote Sensing, Vol. 12, Pages 365: A Parallax Shift Effect Correction Based on Cloud Height for Geostationary Satellites and Radar Observations (Remote Sensing)
 


The effect of cloud parallax shift occurs in satellite imaging, particularly for high angles of satellite observations. This study demonstrates new methods of parallax effect correction for clouds observed by geostationary satellites. The analytical method that could be found in literature, namely the Vicente et al./Koenig method, is presented at the beginning. It approximates a cloud position using an ellipsoid with semi-axes increased by the cloud height. The error values of this method reach up to 50 meters. The second method, which is proposed by the author, is an augmented version of the Vicente et al./Koenig approach. With this augmentation, the error can be reduced to centimeters. The third method, also proposed by the author, incorporates geodetic coordinates. It is described as a set of equations that are solved with the numerical method, and its error can be driven to near zero by adjusting the count of iterations. A sample numerical solution procedure with application of the Newton method is presented. Also, a simulation experiment that evaluates the proposed methods is described in the paper. The results of an experiment are described and contrasted with current technology. Currently, operating geostationary Earth Observation (EO) satellite resolutions vary from 0.5 km up to 8 km. The pixel sizes of these satellites are much greater than for maximal error of the least precise method presented in this paper. Therefore, the chosen method will be important when the resolution of geostationary EO satellites reaches 50 m. To validate the parallax correction, procedure data from on-ground radars and the Meteosat Second Generation (MSG) satellite, which describes stormy events, was compared before and after correction. Comparison was performed by correlating the logarithm of the cloud optical thickness (COT) with radar reflectance in dBZ (radar reflectance – Z in logarithmic form).


 
229 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 12, Pages 364: Correction: Zhu, Q., et al. Hyperspectral Remote Sensing of Phytoplankton Species Composition Based on Transfer Learning. Remote Sensing 2019, 11, 2001 (Remote Sensing)
Remote Sensing, Vol. 12, Pages 363: Evaluation of the Radar QPE and Rain Gauge Data Merging Methods in Northern China (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten