MyJournals Home  

RSS FeedsMarine Drugs, Vol. 18, Pages 74: The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling (Marine Drugs)

 
 

23 january 2020 12:03:08

 
Marine Drugs, Vol. 18, Pages 74: The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling (Marine Drugs)
 


Composite biomaterial scaffolds consisting of natural polymers and bioceramics may offer an alternative to autologous grafts for applications such as bone repair. Herein, we sought to investigate the possibility of incorporating marine coral microparticles into a collagen-based scaffold, a process which we hypothesised would enhance the mechanical properties of the scaffold as well its capacity to promote osteogenesis of human mesenchymal stromal cells. Cryomilling and sieving were utilised to achieve coral microparticles of mean diameters 14 µm and 64 µm which were separately incorporated into collagen-based slurries and freeze-dried to form porous scaffolds. X-ray diffraction and Fourier transform infrared spectroscopy determined the coral microparticles to be comprised of calcium carbonate whereas collagen/coral composite scaffolds were shown to have a crystalline calcium ethanoate structure. Crosslinked collagen/coral scaffolds demonstrated enhanced compressive properties when compared to collagen only scaffolds and also promoted more robust osteogenic differentiation of mesenchymal stromal cells, as indicated by increased expression of bone morphogenetic protein 2 at the gene level, and enhanced alkaline phosphatase activity and calcium accumulation at the protein level. Only subtle differences were observed when comparing the effect of coral microparticles of different sizes, with improved osteogenesis occurring as a result of calcium ion signalling delivered from collagen/coral composite scaffolds. These scaffolds, fabricated from entirely natural sources, therefore show promise as novel biomaterials for tissue engineering applications such as bone regeneration.


 
237 viewsCategory: Biochemistry, Molecular Biology, Pharmacology
 
Marine Drugs, Vol. 18, Pages 72: Mycosporine-Like Amino Acids (MAAs) in Zooplankton (Marine Drugs)
Marine Drugs, Vol. 18, Pages 73: Design of Fungal Co-Cultivation Based on Comparative Metabolomics and Bioactivity for Discovery of Marine Fungal Agrochemicals (Marine Drugs)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Pharmacology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten