MyJournals Home  

RSS FeedsRemote Sensing, Vol. 12, Pages 748: Automated Identification of Crop Tree Crowns From UAV Multispectral Imagery by Means of Morphological Image Analysis (Remote Sensing)

 
 

25 february 2020 14:00:32

 
Remote Sensing, Vol. 12, Pages 748: Automated Identification of Crop Tree Crowns From UAV Multispectral Imagery by Means of Morphological Image Analysis (Remote Sensing)
 


Within the context of precision agriculture, goods insurance, public subsidies, fire damage assessment, etc., accurate knowledge about the plant population in crops represents valuable information. In this regard, the use of Unmanned Aerial Vehicles (UAVs) has proliferated as an alternative to traditional plant counting methods, which are laborious, time demanding and prone to human error. Hence, a methodology for the automated detection, geolocation and counting of crop trees in intensive cultivation orchards from high resolution multispectral images, acquired by UAV-based aerial imaging, is proposed. After image acquisition, the captures are processed by means of photogrammetry to yield a 3D point cloud-based representation of the study plot. To exploit the elevation information contained in it and eventually identify the plants, the cloud is deterministically interpolated, and subsequently transformed into a greyscale image. This image is processed, by using mathematical morphology techniques, in such a way that the absolute height of the trees with respect to their local surroundings is exploited to segment the tree pixel-regions, by global statistical thresholding binarization. This approach makes the segmentation process robust against surfaces with elevation variations of any magnitude, or to possible distracting artefacts with heights lower than expected. Finally, the segmented image is analysed by means of an ad-hoc moment representation-based algorithm to estimate the location of the trees. The methodology was tested in an intensive olive orchard of 17.5 ha, with a population of 3919 trees. Because of the plot’s plant density and tree spacing pattern, typical of intensive plantations, many occurrences of intra-row tree aggregations were observed, increasing the complexity of the scenario under study. Notwithstanding, it was achieved a precision of 99.92%, a sensibility of 99.67% and an F-score of 99.75%, thus correctly identifying and geolocating 3,906 plants. The generated 3D point cloud reported root-mean square errors (RMSE) in the X, Y and Z directions of 0.73 m, 0.39 m and 1.20 m, respectively. These results support the viability and robustness of this methodology as a phenotyping solution for the automated plant counting and geolocation in olive orchards.


 
157 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 12, Pages 749: Coastline Vulnerability Assessment Through Landsat and Cubesats in A Coastal Mega City (Remote Sensing)
Remote Sensing, Vol. 12, Pages 747: A Novel GNSS Attitude Determination Method Based on Primary Baseline Switching for A Multi-Antenna Platform (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten