MyJournals Home  

RSS FeedsMaterials, Vol. 13, Pages 1534: Low-Carbon Concrete Based on Binary Biomass Ash-Silica Fume Binder to Produce Eco-Friendly Paving Blocks (Materials)

 
 

27 march 2020 12:03:58

 
Materials, Vol. 13, Pages 1534: Low-Carbon Concrete Based on Binary Biomass Ash-Silica Fume Binder to Produce Eco-Friendly Paving Blocks (Materials)
 


The civil construction industry consumes huge amounts of raw materials and energy, especially infrastructure. Thus, the use of eco-friendly materials is indispensable to promote sustainable development. In this context, the present work investigated low-carbon concrete to produce eco-friendly paving blocks. The binder was defined according to two approaches. In the first, a binary binder developed with eucalyptus biomass ash (EBA) and silica fume (SF) was used, in total replacement for Portland cement. In the second, the mixture of residues was used as a precursor in alkali-activation reactions, forming alkali-activated binder. The experimental approach was carried out using five different mixtures, obtained by varying the amount of water or sodium hydroxide solution. The characterization of this new material was carried out using compressive strength, expandability, water absorption, deep abrasion, microstructural investigation, and organic matter degradation potential. The results showed that the EBA-SF system has a performance compatible with Portland cement when used as an alternative binder, in addition to functioning as a precursor to alkali-activated concrete. The blocks produced degraded organic matter, and this degradation is more intense with the incidence of UV. In this way, the EBA-SF binder can be successfully used for the manufacture of ecological paving blocks with low carbon emissions.


 
204 viewsCategory: Chemistry, Physics
 
Materials, Vol. 13, Pages 1536: Electrodeposition of CdTe Thin Films for Solar Energy Water Splitting (Materials)
Materials, Vol. 13, Pages 1533: Chromium Concentrate Recovery From Solid Tannery Waste in a Thermal Process (Materials)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten