MyJournals Home  

RSS FeedsCompetition for delivery of profilin-actin to barbed ends limits the rate of formin-mediated actin filament elongation [Cell Biology] (Journal of Biological Chemistry)

 
 

4 april 2020 03:00:17

 
Competition for delivery of profilin-actin to barbed ends limits the rate of formin-mediated actin filament elongation [Cell Biology] (Journal of Biological Chemistry)
 


Formins direct the elongation of unbranched actin filaments by binding their barbed ends and processively stepping onto incoming actin monomers to incorporate them into the filament. Binding of profilin to actin monomers creates profilin-actin complexes, which then bind polyproline tracts located in formin homology 1 (FH1) domains. Diffusion of these natively disordered domains enables direct delivery of profilin-actin to the barbed end, speeding the rate of filament elongation. In this study, we investigated the mechanism of coordinated actin delivery from the multiple polyproline tracts in formin FH1 domains. We found that each polyproline tract can efficiently mediate polymerization, but that all tracts do not generate the same rate of elongation. In WT FH1 domains, the multiple polyproline tracts compete to deliver profilin-actin to the barbed end. This competition ultimately limits the rate of formin-mediated elongation. We propose that intrinsic properties of the filament-binding FH2 domain tune the efficiency of FH1-mediated elongation by directly regulating the rate of monomer incorporation at the barbed end. A strong correlation between competitive FH1-mediated profilin-actin delivery and FH2-regulated gating of the barbed end effectively limits the elongation rate, thereby obviating the need for evolutionary optimization of FH1 domain sequences.


 
203 viewsCategory: Biochemistry
 
The two splice variant forms of Cdc42 exert distinct and essential functions in neurogenesis [Cell Biology] (Journal of Biological Chemistry)
Conformation-specific inhibitors of activated Ras GTPases reveal limited Ras dependency of patient-derived cancer organoids [Signal Transduction] (Journal of Biological Chemistry)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Biochemistry


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten