MyJournals Home  

RSS FeedsRemote Sensing, Vol. 12, Pages 1162: Minimax Bridgeness-Based Clustering for Hyperspectral Data (Remote Sensing)

 
 

4 april 2020 22:03:39

 
Remote Sensing, Vol. 12, Pages 1162: Minimax Bridgeness-Based Clustering for Hyperspectral Data (Remote Sensing)
 


Hyperspectral (HS) imaging has been used extensively in remote sensing applications like agriculture, forestry, geology and marine science. HS pixel classification is an important task to help identify different classes of materials within a scene, such as different types of crops on a farm. However, this task is significantly hindered by the fact that HS pixels typically form high-dimensional clusters of arbitrary sizes and shapes in the feature space spanned by all spectral channels. This is even more of a challenge when ground truth data is difficult to obtain and when there is no reliable prior information about these clusters (e.g., number, typical shape, intrinsic dimensionality). In this letter, we present a new graph-based clustering approach for hyperspectral data mining that does not require ground truth data nor parameter tuning. It is based on the minimax distance, a measure of similarity between vertices on a graph. Using the silhouette index, we demonstrate that the minimax distance is more suitable to identify clusters in raw hyperspectral data than two other graph-based similarity measures: mutual proximity and shared nearest neighbours. We then introduce the minimax bridgeness-based clustering approach, and we demonstrate that it can discover clusters of interest in hyperspectral data better than comparable approaches.


 
200 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 12, Pages 1163: Land Cover Mapping in Cloud-Prone Tropical Areas Using Sentinel-2 Data: Integrating Spectral Features with Ndvi Temporal Dynamics (Remote Sensing)
Remote Sensing, Vol. 12, Pages 1160: Challenges in Estimating Tropical Forest Canopy Height from Planet Dove Imagery (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten