MyJournals Home  

RSS FeedsIJMS, Vol. 21, Pages 2537: Quantitative Proteomic Analysis of Alligator Weed Leaves Reveals That Cationic Peroxidase 1 Plays Vital Roles in the Potassium Deficiency Stress Response (International Journal of Molecular Sciences)

 
 

6 april 2020 14:01:00

 
IJMS, Vol. 21, Pages 2537: Quantitative Proteomic Analysis of Alligator Weed Leaves Reveals That Cationic Peroxidase 1 Plays Vital Roles in the Potassium Deficiency Stress Response (International Journal of Molecular Sciences)
 


Alligator weed is reported to have a strong ability to adapt to potassium deficiency (LK) stress. Leaves are the primary organs responsible for photosynthesis of plants. However, quantitative proteomic changes in alligator weed leaves in response to LK stress are largely unknown. In this study, we investigated the physiological and proteomic changes in leaves of alligator weed under LK stress. We found that chloroplast and mesophyll cell contents in palisade tissue increased, and that the total chlorophyll content, superoxide dismutase (SOD) activity and net photosynthetic rate (PN) increased after 15 day of LK treatment, but the soluble protein content decreased. Quantitative proteomic analysis suggested that a total of 119 proteins were differentially abundant proteins (DAPs). KEGG analysis suggested that most represented DAPs were associated with secondary metabolism, the stress response, photosynthesis, protein synthesis, and degradation pathway. The proteomic results were verified using parallel reaction monitoring mass spectrometry (PRM–MS) analysis and quantitative real-time PCR (qRT-PCR)assays. Additional research suggested that overexpression of cationic peroxidase 1 of alligator weed (ApCPX1) in tobacco increased LK tolerance. The seed germination rate, peroxidase (POD) activity, and K+ content increased, and the hydrogen peroxide (H2O2) content decreased in the three transgenic tobacco lines after LK stress. The number of root hairs of the transgenic line was significantly higher than that of WT, and net K efflux rates were severely decreased in the transgenic line under LK stress. These results confirmed that ApCPX1 played positive roles in low-K+ signal sensing. These results provide valuable information on the adaptive mechanisms in leaves of alligator weed under LK stress and will help identify vital functional genes to apply to the molecular breeding of LK-tolerant plants in the future.


 
198 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 21, Pages 2538: Translational Control of Secretory Proteins in Health and Disease (International Journal of Molecular Sciences)
IJMS, Vol. 21, Pages 2536: Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten