MyJournals Home  

RSS FeedsRemote Sensing, Vol. 12, Pages 1176: Continuous Monitoring of Cotton Stem Water Potential using Sentinel-2 Imagery (Remote Sensing)

 
 

6 april 2020 17:01:22

 
Remote Sensing, Vol. 12, Pages 1176: Continuous Monitoring of Cotton Stem Water Potential using Sentinel-2 Imagery (Remote Sensing)
 


Monitoring cotton status during the growing season is critical in increasing production efficiency. The water status in cotton is a key factor for yield and cotton quality. Stem water potential (SWP) is a precise indicator for assessing cotton water status. Satellite remote sensing is an effective approach for monitoring cotton growth at a large scale. The aim of this study is to estimate cotton water stress at a high temporal frequency and at a large scale. In this study, we measured midday SWP samples according to the acquisition dates of Sentinel-2 images and used them to build linear-regression-based and machine-learning-based models to estimate cotton water stress during the growing season (June to August, 2018). For the linear-regression-based method, we estimated SWP based on different Sentinel-2 spectral bands and vegetation indices, where the normalized difference index 45 (NDI45) achieved the best performance (R2 = 0.6269; RMSE = 3.6802 (-1*swp (bars))). For the machine-learning-based method, we used random forest regression to estimate SWP and received even better results (R2 = 0.6709; RMSE = 3.3742 (-1*swp (bars))). To find the best selection of input variables for the machine-learning-based approach, we tried three different data input datasets, including (1) 9 original spectral bands (e.g., blue, green, red, red edge, near infrared (NIR), and shortwave infrared (SWIR)), (2) 21 vegetation indices, and (3) a combination of original Sentinel-2 spectral bands and vegetation indices. The highest accuracy was achieved when only the original spectral bands were used. We also found the SWIR and red edge band were the most important spectral bands, and the vegetation indices based on red edge and NIR bands were particularly helpful. Finally, we applied the best approach for the linear-regression-based and the machine-learning-based methods to generate cotton water potential maps at a large scale and high temporal frequency. Results suggests that the methods developed here has the potential for continuous monitoring of SWP at large scales and the machine-learning-based method is preferred.


 
42 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 12, Pages 1167: Uncertainty in Measured Raindrop Size Distributions from Four Types of Collocated Instruments (Remote Sensing)
Remote Sensing, Vol. 12, Pages 1175: An Automatic Method for Black Margin Elimination of Sentinel-1A Images over Antarctica (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten