MyJournals Home  

RSS FeedsRemote Sensing, Vol. 12, Pages 1173: Integrity Monitoring for Horizontal RTK Positioning: New Weighting Model and Overbounding CDF in Open-Sky and Suburban Scenarios (Remote Sensing)

 
 

6 april 2020 17:01:22

 
Remote Sensing, Vol. 12, Pages 1173: Integrity Monitoring for Horizontal RTK Positioning: New Weighting Model and Overbounding CDF in Open-Sky and Suburban Scenarios (Remote Sensing)
 


Integrity monitoring is an essential task for ensuring the safety of positioning services. Under a selected probability of hazardous misleading information, the protection levels (PLs) are computed according to a considered threat model to bound the positioning errors. A warning message is sent to users when the PL exceeds a pre-set alert limit (AL). In the short-baseline real-time relative kinematic positioning, the spatially correlated errors, such as the the orbital errors and the atmospheric delays are significantly reduced. However, the remaining atmospheric residuals and the multipath that are not considered in the observation model could directly bias the positioning results. In this contribution, these biases are analysed with the focus put on the multipath effects in different measurement environments. A new observation weighting model considering both the elevation angle and the signal-to-noise ratios is developed and their impacts on the positional results are investigated. The coefficients of the proposed weighting model are determined for the open-sky and the suburban scenarios with the positional benefits maximised. Next, the overbounding excess-mass cumulative distribution functions (EMCs) are searched on the between-receiver level for the weighted phase and code observations in these two scenarios. Based on the mean and standard deviations of these EMCs, horizontal protection levels (HPLs) are computed for the ambiguity-fixed solutions of real experiments. The HPLs are compared with the horizontal positioning errors (HPEs) and the horizontal ALs (HALs). Using the sequential exclusion algorithm developed for the ambiguity resolution in this contribution, the full ambiguity resolution can be achieved in around 100% and 95% of the time for the open-sky and the suburban scenarios, respectively. The corresponding HPLs of the ambiguity-fixed solutions are at the sub-dm to dm-level for both scenarios, and all the valid ambiguity-fixed HPLs are below a HAL of 0.5 m. For the suburban scenario with more complicated multipath environments, the HPLs increase by considering extra biases to account for multipath under a certain elevation threshold. In complicated multipath environments, when this elevation threshold is set to 30 degrees, the availability of the ambiguity-fixed solutions could decrease to below 50% for applications requiring HAL as low as 0.1 m.


 
31 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 12, Pages 1174: Spatiotemporal Distribution and Risk Assessment of Heat Waves Based on Apparent Temperature in the One Belt and One Road Region (Remote Sensing)
Remote Sensing, Vol. 12, Pages 1172: Validation of Ash/Dust Detections from SEVIRI Data Using ACTRIS/EARLINET Ground-Based LIDAR Measurements (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2020 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten