MyJournals Home  

RSS FeedsRemote Sensing, Vol. 13, Pages 3723: Data Quality Evaluation of Sentinel-1 and GF-3 SAR for Wind Field Inversion (Remote Sensing)

 
 

17 september 2021 12:27:49

 
Remote Sensing, Vol. 13, Pages 3723: Data Quality Evaluation of Sentinel-1 and GF-3 SAR for Wind Field Inversion (Remote Sensing)
 


Synthetic aperture radar (SAR) is an important means to observe the sea surface wind field. Sentinel-1 and GF-3 are located on orbit SAR satellites, but the SAR data quality of these two satellites has not been evaluated and compared at present. This paper mainly studies the data quality of Sentinel-1 and GF-3 SAR satellites used in wind field inversion. In this study, Sentinel-1 SAR data and GF-3 SAR data located in Malacca Strait, Hormuz Strait and the east and west coasts of the United States are selected to invert wind fields using the C-band model 5.N (CMOD5.N). Compared with reanalysis data called ERA5, the root mean squared error (RMSE) of the Sentinel-1 inversion results is 1.66 m/s, 1.37 m/s and 1.49 m/s in three intervals of 0~5 m/s, 5~10 m/s and above 10 m/s, respectively; the RMSE of GF-3 inversion results is 1.63 m/s, 1.45 m/s and 1.87 m/s in three intervals of 0~5 m/s, 5~10 m/s and above 10 m/s, respectively. Based on the data of Sentinel-1 and GF-3 located on the east and west coasts of the United States, CMOD5.N is used to invert the wind field. Compared with the buoy data, the RMSE of the Sentinel-1 inversion results is 1.20 m/s, and the RMSE of the GF-3 inversion results is 1.48 m/s. The results show that both Sentinel-1 SAR data and GF-3 SAR data are suitable for wind field inversion, but the wind field inverted by Sentinel-1 SAR data is slightly better than GF-3 SAR data. When applied to wind field inversion, the data quality of Sentinel-1 SAR is slightly better than the data quality of GF-3 SAR. The SAR data quality of GF-3 has achieved a world-leading level.


 
60 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 13, Pages 3722: Response of Vegetation Photosynthetic Phenology to Urbanization in Dongting Lake Basin, China (Remote Sensing)
Remote Sensing, Vol. 13, Pages 3724: MSNet: A Multi-Stream Fusion Network for Remote Sensing Spatiotemporal Fusion Based on Transformer and Convolution (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2021 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten