MyJournals Home  

RSS FeedsRemote Sensing, Vol. 13, Pages 3742: Identification of NO2 and SO2 Pollution Hotspots and Sources in Jiangsu Province of China (Remote Sensing)

 
 

18 september 2021 11:27:58

 
Remote Sensing, Vol. 13, Pages 3742: Identification of NO2 and SO2 Pollution Hotspots and Sources in Jiangsu Province of China (Remote Sensing)
 


Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are important atmospheric trace gases for determining air quality, human health, climate change, and ecological conditions both regionally and globally. In this study, the Ozone Monitoring Instrument (OMI), total column nitrogen dioxide (NO2), and sulfur dioxide (SO2) were used from 2005 to 2020 to identify pollution hotspots and potential source areas responsible for air pollution in Jiangsu Province. The study investigated the spatiotemporal distribution and variability of NO2 and SO2, the SO2/NO2 ratio, and their trends, and potential source contribution function (PSCF) analysis was performed to identify potential source areas. The spatial distributions showed higher values (>0.60 DU) of annual mean NO2 and SO2 for most cities of Jiangsu Province except for Yancheng City (<0.50 DU). The seasonal analyses showed the highest NO2 and SO2 in winter, followed by spring, autumn, and summer. Coal-fire-based room heating and stable meteorological conditions during the cold season may cause higher NO2 and SO2 in winter. Notably, the occurrence frequency of NO2 and SO2 of >1.2 was highest in winter, which varied between 9.14~32.46% for NO2 and 7.84~21.67% for SO2, indicating a high level of pollution across Jiangsu Province. The high SO2/NO2 ratio (>0.60) indicated that industry is the dominant source, with significant annual and seasonal variations. Trends in NO2 and SO2 were calculated for 2005–2020, 2006–2010 (when China introduced strict air pollution control policies during the 11th Five Year Plan (FYP)), 2011–2015 (during the 12th FYP), and 2013–2017 (the Action Plan of Air Pollution Prevention and Control (APPC-AC)). Annually, decreasing trends in NO2 were more prominent during the 12th FYP period (2011–2015: âˆ`0.024~âˆ`0.052 DU/year) than in the APPC-AC period (2013–2017: âˆ`0.007~âˆ`0.043 DU/year) and 2005–2020 (âˆ`0.002 to âˆ`0.012 DU/year). However, no prevention and control policies for NO2 were included during the 11th FYP period (2006–2010), resulting in an increasing trend in NO2 (0.015 to 0.031) observed throughout the study area. Furthermore, the implementation of China`s strict air pollution control policies caused a larger decrease in SO2 (per year) during the 12th FYP period (âˆ`0.002~âˆ`0.075 DU/year) than in the 11th FYP period (âˆ`0.014~âˆ`0.071 DU/year), the APPC-AC period (âˆ`0.007~âˆ`0.043 DU/year), and 2005–2020 (âˆ`0.015~âˆ`0.032 DU/year). PSCF analysis indicated that the air quality of Jiangsu Province is mainly influenced by local pollution sources.


 
179 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 13, Pages 3741: A Completeness and Complementarity Analysis of the Data Sources in the NOAA In Situ Sea Surface Temperature Quality Monitor (iQuam) System (Remote Sensing)
Remote Sensing, Vol. 13, Pages 3740: Long-Term Changes in the Land–Ocean Ecological Environment in Small Island Countries in the South Pacific: A Fiji Vision (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten