MyJournals Home  

RSS FeedsEnergies, Vol. 14, Pages 6667: Model Predictive Controller Design for Vehicle Motion Control at Handling Limits in Multiple Equilibria on Varying Road Surfaces (Energies)

 
 

14 october 2021 15:59:20

 
Energies, Vol. 14, Pages 6667: Model Predictive Controller Design for Vehicle Motion Control at Handling Limits in Multiple Equilibria on Varying Road Surfaces (Energies)
 


Electronic vehicle dynamics systems are expected to evolve in the future as more and more automobile manufacturers mark fully automated vehicles as their main path of development. State-of-the-art electronic stability control programs aim to limit the vehicle motion within the stable region of the vehicle dynamics, thereby preventing drifting. On the contrary, in this paper, the authors suggest its use as an optimal cornering technique in emergency situations and on certain road conditions. Achieving the automated initiation and stabilization of vehicle drift motion (also known as powerslide) on varying road surfaces means a high level of controllability over the vehicle. This article proposes a novel approach to realize automated vehicle drifting in multiple operation points on different road surfaces. A three-state nonlinear vehicle and tire model was selected for control-oriented purposes. Model predictive control (MPC) was chosen with an online updating strategy to initiate and maintain the drift even in changing conditions. Parameter identification was conducted on a test vehicle. Equilibrium analysis was a key tool to identify steady-state drift states, and successive linearization was used as an updating strategy. The authors show that the proposed controller is capable of initiating and maintaining steady-state drifting. In the first test scenario, the reaching of a single drifting equilibrium point with `27.5° sideslip angle and 10 m/s longitudinal speed is presented, which resulted in `20° roadwheel angle. In the second demonstration, the setpoints were altered across three different operating points with sideslip angles ranging from `27.5° to `35°. In the third test case, a wet to dry road transition is presented with 0.8 and 0.95 road grip values, respectively.


 
47 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 14, Pages 6666: Efficiency of Different Balcony Slab Modernization Method in Retrofitted Multi-Family Buildings (Energies)
Energies, Vol. 14, Pages 6668: Aluminium Nitride Doping for Solar Mirrors Self-Cleaning Coatings (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2021 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten