MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 1191: In Vitro Characterization of Sphingosine 1-Phosphate Receptor 1 (S1P1) Expression and Mediated Migration of Primary Human T and B Cells in the Context of Cenerimod, a Novel, Selective S1P1 Receptor Modulator (International Journal of Molecular Sciences)

 
 

21 january 2022 14:29:07

 
IJMS, Vol. 23, Pages 1191: In Vitro Characterization of Sphingosine 1-Phosphate Receptor 1 (S1P1) Expression and Mediated Migration of Primary Human T and B Cells in the Context of Cenerimod, a Novel, Selective S1P1 Receptor Modulator (International Journal of Molecular Sciences)
 


Cenerimod is a potent, selective sphingosine 1-phosphate receptor 1 (S1P1) modulator currently investigated in a Phase IIb study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including T and B lymphocytes) in the bloodstream and inflamed tissues, making them an effective therapeutic concept for autoimmune disorders. Although the effect of S1P receptor modulators in reducing circulating lymphocytes is well documented, the precise molecular role of the S1P1 receptor on these cell types is not fully understood. In this study, the mode of action of cenerimod on human primary lymphocytes in different activation states was investigated focusing on their chemotactic behavior towards S1P in real-time, concomitant to S1P1 receptor expression and internalization dynamics. Here, we show that cenerimod effectively prevents T and B cell migration in a concentration-dependent manner. Interestingly, while T cell activation led to strong S1P1 re-expression and enhanced migration; in B cells, an enhanced migration capacity and S1P1 receptor surface expression was observed in an unstimulated state. Importantly, concomitant treatment with glucocorticoids (GCs), a frequently used treatment for autoimmune disorders, had no impact on the inhibitory activity of cenerimod on lymphocytes.


 
2628 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 1168: Deep Functional Profiling of Wild Animal Microbiomes Reveals Probiotic Bacillus pumilus Strains with a Common Biosynthetic Fingerprint (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 1192: Fentanyl but Not Morphine or Buprenorphine Improves the Severity of Necrotizing Acute Pancreatitis in Rats (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten