MyJournals Home  

RSS FeedsEnergies, Vol. 15, Pages 3570: Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value (Energies)

 
 

13 may 2022 10:27:03

 
Energies, Vol. 15, Pages 3570: Optimal Balance between Heating, Cooling and Environmental Impacts: A Method for Appropriate Assessment of Building Envelope’s U-Value (Energies)
 


In Europe, the recent application of regulations oriented to zero-energy buildings and climate neutrality in 2050 has led to a reduction in energy consumption for heating and cooling in the construction sector. The thermal insulation of the building envelope plays a key role in this process and the requirements about the maximum allowable thermal transmittance are defined by country-specific guidelines. Typically, high insulation values provide low energy consumption for heating; however, they may also entail a risk of overheating in summer period and thus negatively affect the overall performance of the building. In addition, the embodied energy and related emissions caused by the manufacturing and transportation processes of thermal insulation cannot be further neglected in the evaluation of the best optimal solution. Therefore, this paper aims to evaluate the influence in terms of embodied and operational energy of various walls’ thermal insulation thicknesses on residential buildings in Europe. To this end, the EnergyPlus engine was used for the energy simulation within the Ladybug and Honeybee tools, by parametrically conducting multiple iterations; 53 variations of external wall U-value, considering high- and low-thermal-mass scenarios, were simulated for 100 representative cities of the European context, using a typical multifamily building as a reference. The results demonstrate that massive walls generally perform better than lightweight structures and the best solution in terms of energy varies according to each climate. Accordingly, the wall’s thermal transmittance for the samples of Oslo, Bordeaux, Rome and Almeria representative of the Continental, oceanic temperate, Mediterranean, and hot, semi-arid climates were, respectively: 0.12, 0.26, 0.42, and 0.64 W/m2K. The optimal solutions are graphically reported on the map of Europe according to specific climatic features, providing a guidance for new constructions and building retrofit.


 
113 viewsCategory: Biophysics, Biotechnology, Physics
 
Energies, Vol. 15, Pages 3573: International Natural Gas Price Trends Prediction with Historical Prices and Related News (Energies)
Energies, Vol. 15, Pages 3574: Quality of Hydrochar from Wine Sludge under Variable Conditions of Hydrothermal Carbonization: The Case of Lesvos Island (Energies)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten