MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 2380: Soil Moisture Influence on the FTIR Spectrum of Salt-Affected Soils (Remote Sensing)

 
 

15 may 2022 13:08:53

 
Remote Sensing, Vol. 14, Pages 2380: Soil Moisture Influence on the FTIR Spectrum of Salt-Affected Soils (Remote Sensing)
 


Soil salinity has a major impact on agricultural production. In a changing climate with rising sea-levels, low-lying coastal areas are increasingly inundated whereby saltwater gradually contaminates the soil. Drought prone areas may suffer from salinity due to high evapotranspiration rates in combination with the use of saline irrigation water. Salinity is difficult to monitor because soil moisture affects the soil’s spectral signature. We conducted Fourier-transform infrared spectroscopy on alluvial and sandy soil samples in the coastal estuary of the Red River Delta. The soils are contaminated with NaCl, Na2CO3 and Na2SO4 salts. In an experiment of salt contamination, we established that three ranges of the spectrum were strongly influenced by both salt and moisture content in the soil, at wavenumbers 3200–3400 cm−1 (2.9–3.1 µm); 1600–1700 cm−1 (5.9–6.3 µm); 900–1100 cm−1 (9.1–11.1 µm). The Na2CO3 contaminated soil and the spectral value had a linear relationship between wavelengths 6.9 and 7.4 µm. At wavelength 6.99 µm, there was no relationship between absorbance and soil moisture, but the absorbance was proportional to the salt content (R2 = 0.85; RMSE = 0.68 g) and electrical conductivity (R2 = 0.50; RMSE = 3.8 dS/m). The relationship between soil moisture and spectral absorbance value was high at wavelengths below 6.7 µm, resulting in a quadratic relation between soil moisture and absorbance at wavelength 6.13 µm (R2 = 0.80; RMSE = 5.2%). The spectral signatures and equations might be useful for mapping salt-affected soils, particularly in difficult to access locations. Technological advances in thermal satellite sensors may offer possibilities for monitoring soil salinity.


 
134 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 2378: Efficient Shallow Network for River Ice Segmentation (Remote Sensing)
Remote Sensing, Vol. 14, Pages 2379: Machine Learning Algorithms for Modeling and Mapping of Groundwater Pollution Risk: A Study to Reach Water Security and Sustainable Development (Sdg) Goals in a Mediterranean Aquifer System (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten