MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 2400: Quantifying the Trends and Variations in the Frost-Free Period and the Number of Frost Days across China under Climate Change Using ERA5-Land Reanalysis Dataset (Remote Sensing)

 
 

17 may 2022 12:37:46

 
Remote Sensing, Vol. 14, Pages 2400: Quantifying the Trends and Variations in the Frost-Free Period and the Number of Frost Days across China under Climate Change Using ERA5-Land Reanalysis Dataset (Remote Sensing)
 


Understanding the spatio-temporal variations in the frost-free period (FFP) and the number of frost days (FD) is beneficial to reduce the harmful effects of climate change on agricultural production and enhancing agricultural adaptation. However, the spatio-temporal variations in FFP and FD and their response to climate change remain unclear across China. To investigate the impact of climate change on FFP and FD, the trends and variations in FFP and FD across China from 1950 to 2020 were quantified using ERA5-Land, a reanalysis dataset with high spatial and temporal resolution. The results showed that ERA5-Land has good applicability in quantifying the trends and variations in FFP and FD across China under climate change. The spatial distribution of multi-year average FFP and FD across China showed significant latitudinal zonality and altitude dependence, i.e., FFP decreased with increasing latitude and altitude, while FD increased with increasing latitude and altitude. As a result of climate warming across China, the FFP showed an increasing trend with an increase rate of 1.25 d/10a and the maximum increasing rate of FFP in the individual region was 6.2 d/10a, while the FD showed a decreasing trend with a decrease rate of 1.41 d/10a and the maximum decreasing rate of FD in the individual region was −6.7 d/10a. Among the five major climate zones in China, the subtropical monsoon climate zone (SUMZ) with the greatest increasing rate of 1.73 d/10a in FFP, while the temperate monsoon climate zone (TEMZ) with the greatest decreasing rate of −1.72 d/10a in FD. In addition, the coefficient of variation (Cv) of FFP showed greater variability at higher altitudes, while the Cv of FD showed greater variability at lower latitudes in southern China. Without considering the adaptation to temperature of crops, a general increase in FFP and a general decrease in FD were both beneficial to agricultural production in terms of FFP and FD promoting a longer growing period and reducing frost damage on crops. This study provides a comprehensive understanding of the trends and variations in FFP and FD under climate change, which is of great scientific significance for the adjustment of the agricultural production layout to adapt to climate change in China.


 
134 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 2399: Assessment of Maize Drought Risk in Midwestern Jilin Province: A Comparative Analysis of TOPSIS and VIKOR Models (Remote Sensing)
Remote Sensing, Vol. 14, Pages 2402: Heatwaves Significantly Slow the Vegetation Growth Rate on the Tibetan Plateau (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten