MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 5698: The Protein L-isoaspartyl (D-aspartyl) Methyltransferase Regulates Glial-to-Mesenchymal Transition and Migration Induced by TGF-β1 in Human U-87 MG Glioma Cells (International Journal of Molecular Sciences)

 
 

19 may 2022 16:18:40

 
IJMS, Vol. 23, Pages 5698: The Protein L-isoaspartyl (D-aspartyl) Methyltransferase Regulates Glial-to-Mesenchymal Transition and Migration Induced by TGF-β1 in Human U-87 MG Glioma Cells (International Journal of Molecular Sciences)
 


The enzyme PIMT methylates abnormal aspartyl residues in proteins. U-87 MG cells are commonly used to study the most frequent brain tumor, glioblastoma. Previously, we reported that PIMT isoform I possessed oncogenic features when overexpressed in U-87 MG and U-251 MG glioma cells. Higher levels of wild-type PIMT stimulated migration and invasion in both glioma cell lines. Conversely, PIMT silencing reduced these migratory abilities of both cell lines. These results indicate that PIMT could play a critical role in glioblastoma growth. Here, we investigated for the first time, molecular mechanisms involving PIMT in the regulation of epithelial to mesenchymal transition (EMT) upon TGF-β1 treatments. Gene array analyses indicated that EMT genes but not PIMT gene were regulated in U-87 MG cells treated with TGF-β1. Importantly, PIMT silencing by siRNA inhibited in vitro migration in U-87 MG cells induced by TGF-β1. In contrast, overexpressed wild-type PIMT and TGF-β1 had additive effects on cell migration. When PIMT was inhibited by siRNA, this prevented Slug induction by TGF-β1, while Snail stimulation by TGF-β1 was increased. Indeed, overexpression of wild-type PIMT led to the opposite effects on Slug and Snail expression dependent on TGF-β1. These data highlighted the importance of PIMT in the EMT response dependent on TGF-β1 in U-87 MG glioma cells by an antagonist regulation in the expression of transcription factors Slug and Snail, which are critical players in EMT.


 
136 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 5696: Sequence Analysis and Functional Verification of the Effects of Three Key Structural Genes, PdTHC2’GT, PdCHS and PdCHI, on the Isosalipurposide Synthesis Pathway in Paeonia delavayi var. lutea (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 5697: An Experimental Study Reveals the Protective Effect of Autophagy against Realgar-Induced Liver Injury via Suppressing ROS-Mediated NLRP3 Inflammasome Pathway (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten