MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 2826: Efficient Detection of Earthquake−Triggered Landslides Based on U−Net++: An Example of the 2018 Hokkaido Eastern Iburi (Japan) Mw = 6.6 Earthquake (Remote Sensing)

 
 

13 june 2022 09:51:04

 
Remote Sensing, Vol. 14, Pages 2826: Efficient Detection of Earthquake−Triggered Landslides Based on U−Net++: An Example of the 2018 Hokkaido Eastern Iburi (Japan) Mw = 6.6 Earthquake (Remote Sensing)
 


Efficient detection of earthquake−triggered landslides is crucial for emergency response and risk assessment. With the development of multi−source remote sensing images, artificial intelligence has gradually become a powerful landslide detection method for similar tasks, aiming to mitigate time−consuming problems and meet emergency requirements. In this study, a relatively new deep learning (DL) network, called U−Net++, was designed to detect landslides for regions affected by the Iburi, Japan Mw = 6.6 earthquake, with only small training samples. For feature extraction, ResNet50 was selected as the feature extraction layer, and transfer learning was adopted to introduce the pre−trained weights for accelerating the model convergence. To prove the feasibility and validity of the proposed model, the random forest algorithm (RF) was selected as the benchmark, and the F1−score, Kappa coefficient, and IoU (Intersection of Union) were chosen to quantitatively evaluate the model’s performance. In addition, the proposed model was trained with different sample sizes (256,512) and network depths (3,4,5), respectively, to analyze their impacts on performance. The results showed that both models detected the majority of landslides, while the proposed model obtained the highest metric value (F1−score = 0.7580, Kappa = 0.7441, and IoU = 0.6104) and was capable of resisting the noise. In addition, the proposed model trained with sample size 256 possessed optimal performance, proving that the size is a non−negligible parameter in U−Net++, and it was found that the U−Net++ trained with shallower layer 3 yielded better results than that with the standard layer 5. Finally, the outstanding performance of the proposed model on a public landslide dataset demonstrated the generalization of U−Net++.


 
196 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 2824: Monitoring Ecological Conditions by Remote Sensing and Social Media Data—Sanya City (China) as Case Study (Remote Sensing)
Remote Sensing, Vol. 14, Pages 2828: Spatial Scale Effect and Correction of Forest Aboveground Biomass Estimation Using Remote Sensing (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten