MyJournals Home  

RSS FeedsMolecules, Vol. 27, Pages 5030: Stability and Antiproliferative Activity of Malvidin-Based Non-Oxonium Derivative (Oxovitisin A) Compared with Precursor Anthocyanins and Pyranoanthocyanins (Molecules)

 
 

7 august 2022 14:22:59

 
Molecules, Vol. 27, Pages 5030: Stability and Antiproliferative Activity of Malvidin-Based Non-Oxonium Derivative (Oxovitisin A) Compared with Precursor Anthocyanins and Pyranoanthocyanins (Molecules)
 


Oxovitisins are a unique group of anthocyanin derivatives with a non-oxonium nature and α-pyranone (lactone) D ring on the structure. In this study, oxovitisin A was synthesized through the micro-oxidative reaction of carboxypyranomalvidin-3-O-glucoside (vitisin A) with water, and its thermostability, pH, and SO2 color stability were studied compared with its two precursors, malvidin-3-O-glucoside (Mv3glc) and vitisin A, as well as methylpyrano-malvidin-3-O-glucoside (Me-py). Results showed that oxovitisin A exhibited the highest stabilities, which were inseparably related to its noncharged structure and the additional carbonyl group on the D ring. Moreover, the antiproliferative capacity of oxovitisin A was comparatively evaluated against two human gastrointestinal cancer cell lines. Interestingly, oxovitisin A presented the strongest antiproliferative ability on MKN-28 (IC50 = 538.42 ± 50.06 μM) and Caco-2 cells (IC50 = 434.85 ± 11.87 μM) compared with two other pyranoanthocyanins. Therefore, we conclude that oxovitisin A as a highly stable anthocyanin derivative still exhibits a satisfactory antiproliferative ability.


 
113 viewsCategory: Biochemistry, Chemistry, Molecular Biology
 
Molecules, Vol. 27, Pages 5029: Identification of Novel 4′-O-Demethyl-epipodophyllotoxin Derivatives as Antitumor Agents Targeting Topoisomerase II (Molecules)
Molecules, Vol. 27, Pages 5033: Cookies Fortified with Lonicera japonica Thunb. Extracts: Impact on Phenolic Acid Content, Antioxidant Activity and Physical Properties (Molecules)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten