MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 3824: Image-Based Obstacle Detection Methods for the Safe Navigation of Unmanned Vehicles: A Review (Remote Sensing)

 
 

8 august 2022 14:18:55

 
Remote Sensing, Vol. 14, Pages 3824: Image-Based Obstacle Detection Methods for the Safe Navigation of Unmanned Vehicles: A Review (Remote Sensing)
 


Mobile robots lack a driver or a pilot and, thus, should be able to detect obstacles autonomously. This paper reviews various image-based obstacle detection techniques employed by unmanned vehicles such as Unmanned Surface Vehicles (USVs), Unmanned Aerial Vehicles (UAVs), and Micro Aerial Vehicles (MAVs). More than 110 papers from 23 high-impact computer science journals, which were published over the past 20 years, were reviewed. The techniques were divided into monocular and stereo. The former uses a single camera, while the latter makes use of images taken by two synchronised cameras. Monocular obstacle detection methods are discussed in appearance-based, motion-based, depth-based, and expansion-based categories. Monocular obstacle detection approaches have simple, fast, and straightforward computations. Thus, they are more suited for robots like MAVs and compact UAVs, which usually are small and have limited processing power. On the other hand, stereo-based methods use pair(s) of synchronised cameras to generate a real-time 3D map from the surrounding objects to locate the obstacles. Stereo-based approaches have been classified into Inverse Perspective Mapping (IPM)-based and disparity histogram-based methods. Whether aerial or terrestrial, disparity histogram-based methods suffer from common problems: computational complexity, sensitivity to illumination changes, and the need for accurate camera calibration, especially when implemented on small robots. In addition, until recently, both monocular and stereo methods relied on conventional image processing techniques and, thus, did not meet the requirements of real-time applications. Therefore, deep learning networks have been the centre of focus in recent years to develop fast and reliable obstacle detection solutions. However, we observed that despite significant progress, deep learning techniques also face difficulties in complex and unknown environments where objects of varying types and shapes are present. The review suggests that detecting narrow and small, moving obstacles and fast obstacle detection are the most challenging problem to focus on in future studies.


 
103 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 3825: DGPolarNet: Dynamic Graph Convolution Network for LiDAR Point Cloud Semantic Segmentation on Polar BEV (Remote Sensing)
Remote Sensing, Vol. 14, Pages 3827: Long-Term Investigation of Aerosols in the Urmia Lake Region in the Middle East by Ground-Based and Satellite Data in 2000–2021 (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten