MyJournals Home  

RSS FeedsIJMS, Vol. 23, Pages 11228: Nicotinamide Mononucleotide Prevents Retinal Dysfunction in a Mouse Model of Retinal Ischemia/Reperfusion Injury (International Journal of Molecular Sciences)

 
 

23 september 2022 15:51:35

 
IJMS, Vol. 23, Pages 11228: Nicotinamide Mononucleotide Prevents Retinal Dysfunction in a Mouse Model of Retinal Ischemia/Reperfusion Injury (International Journal of Molecular Sciences)
 


Retinal ischemia/reperfusion (I/R) injury can cause severe vision impairment. Retinal I/R injury is associated with pathological increases in reactive oxygen species and inflammation, resulting in retinal neuronal cell death. To date, effective therapies have not been developed. Nicotinamide mononucleotide (NMN), a key nicotinamide adenine dinucleotide (NAD+) intermediate, has been shown to exert neuroprotection for retinal diseases. However, it remains unclear whether NMN can prevent retinal I/R injury. Thus, we aimed to determine whether NMN therapy is useful for retinal I/R injury-induced retinal degeneration. One day after NMN intraperitoneal (IP) injection, adult mice were subjected to retinal I/R injury. Then, the mice were injected with NMN once every day for three days. Electroretinography and immunohistochemistry were used to measure retinal functional alterations and retinal inflammation, respectively. The protective effect of NMN administration was further examined using a retinal cell line, 661W, under CoCl2-induced oxidative stress conditions. NMN IP injection significantly suppressed retinal functional damage, as well as inflammation. NMN treatment showed protective effects against oxidative stress-induced cell death. The antioxidant pathway (Nrf2 and Hmox-1) was activated by NMN treatment. In conclusion, NMN could be a promising preventive neuroprotective drug for ischemic retinopathy.


 
100 viewsCategory: Biochemistry, Biophysics, Molecular Biology
 
IJMS, Vol. 23, Pages 11227: Egg Protein Transferrin-Derived Peptides Irw (Lle-Arg-Trp) and Iqw (Lle-Gln-Trp) Prevent Obesity Mouse Model Induced by a High-Fat Diet via Reducing Lipid Deposition and Reprogramming Gut Microbiota (International Journal of Molecular Sciences)
IJMS, Vol. 23, Pages 11229: Ectopic Expression of Arabidopsis thaliana zDof1.3 in Tomato (Solanum lycopersicum L.) Is Associated with Improved Greenhouse Productivity and Enhanced Carbon and Nitrogen Use (International Journal of Molecular Sciences)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Molecular Biology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten