MyJournals Home  

RSS FeedsRemote Sensing, Vol. 14, Pages 4795: The Three Rivers Source Region Alpine Grassland Ecosystem Was a Weak Carbon Sink Based on BEPS Model Analysis (Remote Sensing)

 
 

26 september 2022 11:45:34

 
Remote Sensing, Vol. 14, Pages 4795: The Three Rivers Source Region Alpine Grassland Ecosystem Was a Weak Carbon Sink Based on BEPS Model Analysis (Remote Sensing)
 


The Three Rivers Source Region (TRSR) is a natural habitat for rare animals and a genetic treasure trove of plateau organisms. It is an important eco-safety barrier in China and even Asia, and a priority of China’s to promote ecological advancement. Precisely assessing the dynamics and mechanisms of alpine grassland ecosystem carbon budgets is beneficial for quantifying the response to climate change on a regional scale. The spatial distribution and dynamic changes in carbon fluxes in the TRSR from 1985 to 2018 were analyzed by the Theil–Sen + Mann–Kendall and ensemble empirical mode decomposition (EEMD) methods, and multiple linear regression was used to quantify the contribution of meteorological elements to the carbon flux trends. The results indicated that (1) the alpine grassland ecosystem was a weak carbon sink. The multiyear mean gross primary production (GPP) and net ecosystem production (NEP) in the TRSR were 147.86 and 11.27 g C/m2/yr, respectively. The distribution of carbon fluxes progressively decreased from east to west. (2) The carbon fluxes of the alpine grassland ecosystem were dominated by a monotonically increasing trend, with increasing rates of GPP and NEP of 1.31 and 0.40 g C/m2/yr, respectively. A total of 48.60% of the alpine grassland showed a significant increase in NEP, whereas only 0.21% showed a significant decrease during the research term. (3) The alpine meadow sequestered carbon better than the alpine steppe did and accounted for more than 60% of the regional carbon sink. (4) In a correlation analysis between NEP and temperature, precipitation and solar radiation, the positive correlation accounted for 89.67%, 90.51%, and 21.16% of the TRSR, respectively. Rising temperatures and increased precipitation were the main drivers contributing to the increase in NEP. Research on carbon budget variability and mechanisms can help guide preservation zoning initiatives in national parks.


 
101 viewsCategory: Geology, Physics
 
Remote Sensing, Vol. 14, Pages 4794: Assessment of Sentinel-2-MSI Atmospheric Correction Processors and In Situ Spectrometry Waters Quality Algorithms (Remote Sensing)
Remote Sensing, Vol. 14, Pages 4796: Effect of Radio Frequency Interference-Contaminated AMSR2 Signal Restoration on Soil Moisture Retrieval (Remote Sensing)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Physics


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten