MyJournals Home  

RSS FeedsMarine Drugs, Vol. 20, Pages 621: Nitrogen Starvation Enhances the Production of Saturated and Unsaturated Fatty Acids in Aurantiochytrium sp. PKU#SW8 by Regulating Key Biosynthetic Genes (Marine Drugs)

 
 

30 september 2022 12:00:25

 
Marine Drugs, Vol. 20, Pages 621: Nitrogen Starvation Enhances the Production of Saturated and Unsaturated Fatty Acids in Aurantiochytrium sp. PKU#SW8 by Regulating Key Biosynthetic Genes (Marine Drugs)
 


Nitrogen deprivation is known to improve lipid accumulation in microalgae and thraustochytrids. However, the patterns of fatty acid production and the molecular mechanisms underlying the accumulation of unsaturated and saturated fatty acids (SFAs) under nitrogen starvation remain largely unknown for thraustochytrids. In this study, batch culture experiments under nitrogen replete and nitrogen starvation conditions were performed, and the changes in the transcriptome of Aurantiochytrium sp. PKU#SW8 strain between these conditions were investigated. Our results showed improved yields of total fatty acids (TFAs), total unsaturated fatty acids, and total SFAs under nitrogen starvation, which suggested that nitrogen starvation favors the accumulation of both unsaturated and saturated fatty acids in PKU#SW8. However, nitrogen starvation resulted in a more than 2.36-fold increase of SFAs whereas a 1.7-fold increase of unsaturated fatty acids was observed, indicating a disproportionate increase in these groups of fatty acids. The fabD and enoyl-CoA hydratase genes were significantly upregulated under nitrogen starvation, supporting the observed increase in the yield of TFAs from 2.63 ± 0.22 g/L to 3.64 ± 0.16 g/L. Furthermore, the pfaB gene involved in the polyketide synthase (PKS) pathway was significantly upregulated under nitrogen starvation. This suggested that the increased expression of the pfaB gene under nitrogen starvation may be one of the explanations for the increased yield of docosahexaenoic acid by 1.58-fold. Overall, our study advances the current understanding of the molecular mechanisms that underlie the response of thraustochytrids to nitrogen deprivation and their fatty acid biosynthesis.


 
98 viewsCategory: Biochemistry, Molecular Biology, Pharmacology
 
Marine Drugs, Vol. 20, Pages 619: Investigation of the Genotoxic Potential of the Marine Toxin C17-SAMT Using the in Vivo Comet and Micronucleus Assays (Marine Drugs)
Marine Drugs, Vol. 20, Pages 620: Seven New Alkaloids Isolated from Marine Flavobacterium Tenacibaculum discolor sv11 (Marine Drugs)
 
 
blog comments powered by Disqus


MyJournals.org
The latest issues of all your favorite science journals on one page

Username:
Password:

Register | Retrieve

Search:

Pharmacology


Copyright © 2008 - 2024 Indigonet Services B.V.. Contact: Tim Hulsen. Read here our privacy notice.
Other websites of Indigonet Services B.V.: Nieuws Vacatures News Tweets Nachrichten